
Error Bounds from Extra Precise Iterative Refinement∗

James Demmel† Yozo Hida‡ W. Kahan§ Xiaoye S. Li¶ Soni Mukherjee‖

E. Jason Riedy∗∗

March 3, 2005

Abstract

We present the design and testing of an algorithm for iterative refinement of the solution
of linear equations, where the residual is computed with extra precision. This algorithm was
originally proposed in the 1960s [6, 22] as a means to compute very accurate solutions to all
but the most ill-conditioned linear systems of equations. However two obstacles have until
now prevented its adoption in standard subroutine libraries like LAPACK: (1) There was no
standard way to access the higher precision arithmetic needed to compute residuals, and (2) it
was unclear how to compute a reliable error bound for the computed solution. The completion
of the new BLAS Technical Forum Standard [5] has recently removed the first obstacle. To
overcome the second obstacle, we show how a single application of iterative refinement can be
used to compute an error bound in any norm at small cost, and use this to compute both an
error bound in the usual infinity norm, and a componentwise relative error bound.

We report extensive test results on over 6.2 million matrices of dimension 5, 10, 100, and 1000.
As long as a normwise (resp. componentwise) condition number computed by the algorithm is
less than 1/max{10,

√
n}εw, the computed normwise (resp. componentwise) error bound is at most

2 max{10,
√

n} · εw, and indeed bounds the true error. Here, n is the matrix dimension and
εw = 2−24 is single precision roundoff error. Residuals were computed in double precision (53
bits of precision). For worse conditioned problems, we get similarly small correct error bounds
in over 89% of cases.

∗Computer Science Division Technical Report UCB//CSD-04-1344, University of California, Berkeley, 94720. This
research was supported in part by the NSF Cooperative Agreement No. ACI-9619020; NSF Grant Nos. ACI-9813362
and CCF-0444486; the DOE Grant Nos. DE-FG03-94ER25219, DE-FC03-98ER25351, and DE-FC02-01ER25478; and
the National Science Foundation Graduate Research Fellowship. The authors wish to acknowledge the contribution
from Intel Corporation, Hewlett-Packard Corporation, IBM Corporation, and the National Science Foundation grant
EIA-0303575 in making hardware and software available for the CITRIS Cluster which was used in producing these
research results.

†Computer Science Division and Mathematics Dept., University of California, Berkeley, CA 94720
(demmel@cs.berkeley.edu).

‡Computer Science Division, University of California, Berkeley, CA 94720 (yozo@cs.berkeley.edu).
§Computer Science Division and Mathematics Dept., University of California, Berkeley, CA 94720

(wkahan@cs.berkeley.edu).
¶Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (xsli@lbl.gov).
‖Computer Science Division and Mathematics Dept., University of California, Berkeley, CA 94720.
∗∗Computer Science Division, University of California, Berkeley, CA 94720 (ejr@cs.berkeley.edu).

1

mailto:ejr+itrefpaper@cs.berkeley.edu

Contents

1 Introduction 3

2 Error Analysis 6
2.1 Normwise Error Estimate . 7
2.2 Equilibration and Choice of Scaled Norms . 9
2.3 Componentwise Error Estimate . 10
2.4 Termination Criteria and Employing Additional Precision 11

3 Algorithmic Details 12

4 Related Work 15

5 Testing Configuration 19
5.1 Review of the XBLAS . 19
5.2 Test Matrix Generation . 20
5.3 Test Matrix Statistics . 21
5.4 Accuracy of Single Precision Condition Numbers . 25
5.5 Testing Platforms . 26

6 Numerical Results 26
6.1 Normwise Error Estimate . 27
6.2 Componentwise Error Estimate . 33
6.3 Iteration Counts and Running Time . 35
6.4 Effects of various parameters in Algorithm 3 . 39

6.4.1 Effect of doubled-x iteration . 39
6.4.2 Effect of ρthresh . 39
6.4.3 Justification of various components in the error bound 42

6.5 “Cautious” versus “aggressive” parameter settings 43

7 Limitations of Refinement and our Bounds 43
7.1 Conditioning . 44
7.2 Rounding Errors in Residual and Update Computations 46
7.3 Zero Components and Scaling . 49
7.4 Equilibration . 50

8 New Routines Proposed for LAPACK 51

9 Conclusions and Future Work 53

A Generating Systems with Exact Zero Solution Components 54

2

1 Introduction

Iterative refinement is a technique for improving the accuracy of the solution of a system of linear
equations Ax = b. Given some basic solution method (such as Gaussian Elimination with Partial
Pivoting – GEPP), the basic algorithm is as follows:

Input: An n× n matrix A, and an n× 1 vector b
Output: A solution vector x(i) approximating x in Ax = b, and

an error bound ≈ ‖x(i)−x‖∞/‖x‖∞
Solve Ax(1) = b using the basic solution method
i = 1
repeat

Compute residual r(i) = Ax(i) − b
Solve A dx(i+1) = r(i) using the basic solution method
Update x(i+1) = x(i) − dx(i+1)

i = i + 1
until x(i) is “accurate enough”
return x(i) and an error bound

Algorithm 1: Basic iterative refinement

(Note that x(i) is a vector, and we use the notation x
(i)
j to mean the j-th component of x(i).)

This can be thought of as Newton’s method applied to the linear system f(x) = Ax − b. In
the absence of error, Newton’s method should converge immediately on a linear system, but the
presence of rounding error in the inner loop of the algorithm prevents this immediate convergence
and makes the behavior and analysis interesting.

The behavior of the algorithm depends strongly on the accuracy with which the residual r(i) is
computed. We use working precision εw to denote the precision with which all input variables are
stored. The basic solution method is used to solve Ax = b and A dx = r in working precision. In
our numerical experiments, working precision is IEEE754 single precision, i.e. εw = 2−24. Classical
analyses of Wilkinson [6] and Moler [22] show that if the residual is computed to about double the
working precision then as long as the condition number of A is not too large (sufficiently less than
1/εw) the solution x(i) will converge to roughly working precision; this is the starting point for the
analysis of Section 2 below. A more recent analysis of Skeel [29] considers computing the residual to
working precision, and shows how this can improve backward stability but not necessarily accuracy;
this is the version of iterative refinement implemented in LAPACK version 3.0 (see Algorithm 5
below). See [13, Chap. 12] for an overview of these schemes.

Section 2 presents a detailed error analysis of Algorithm 1 above, tracking the effects of rounding
error in each line. We first use this analysis to derive and justify a stopping criterion and a reliable
bound for the normwise relative error

‖x(i) − x‖∞
‖x‖∞

. (1)

Here and later x = A−1b denotes the exact solution, assuming A is not singular.
Second, we observe that the entire algorithm is column scaling invariant. More precisely, if we

assume that (1) our basic solution scheme is GEPP without any Strassen-like implementation [31],

3

(2) that no over/underflow occurs, and (3) C is any diagonal matrix whose diagonal entries are
powers of the floating point radix β (β = 2 in the case of IEEE754 floating point standard arith-
metic [2]), then replacing the matrix A by Ac ≡ AC results in exactly the same roundoff errors being
committed by Algorithm 1. Said another way, all the floating point numbers appearing throughout
the algorithm change only in their exponents bits (by scaling by particular diagonal entries of C),
not in their fraction bits: The exact solution xc of the scaled system Acxc = b satisfies xc = C−1x

where Ax = b, and every intermediate approximation x
(i)
c = C−1x(i).

This means that a single application of Algorithm 1 (producing a sequence of approximations
x(i)) can be thought of as implicitly producing the sequence x

(i)
c for the scaled system Acxc = b.

This will mean that at a modest extra cost, we will be able to modify Algorithm 1 to compute the
stopping criterion and error bound for xc for any diagonal scaling C. (The extra cost is O(n) per
iteration, whereas one iteration costs O(n2) if A is a dense matrix.) In other words we will be able
to cheaply compute a bound on the scaled relative error

‖C−1(x(i) − x)‖∞
‖C−1x‖∞

(2)

for any scaling C.
Of the many C one might choose, a natural one would be C ≈ diag(xj), so that each component

xc,j ≈ 1. This means that the scaled relative error (2) measures the componentwise relative error
in the solution. There are two conditions for this to work. First, no component of x can equal
0, since in this case no finite componentwise relative error bound exists (unless the component is
computed exactly). Second, the algorithm must converge (since C, which is computed on-the-fly,
will affect the stopping criterion too).

Section 2 describes and analyzes the precise stopping criterion and error bound for Algorithm 1.
One outcome of this analysis are two condition numbers that predict the success of iterative re-
finement. Let n be the matrix dimension and εw be the working precision. Then if the normwise
condition number κnorm(A) < 1/γεw, where γ = max{10,

√
n}, the error analysis predicts conver-

gence to a small normwise error and error bound. Similarly, if the componentwise condition number
κcomp(A) < 1/γεw, the error analysis predicts convergence to small componentwise error and error
bound. This is borne out by our numerical experiments described below.

Our ultimate algorithm, Algorithm 3, is described in Section 3. Algorithm 3 differs from
Algorithm 1 in several important ways:

• Both normwise and componentwise error bounds are computed from a single iteration, as
mentioned above.

• If consecutive increments dx(i) are not decreasing rapidly enough, the algorithm switches to
representing dx(i) in doubled working precision, i.e. by a pair of working precision arrays
representing (roughly) the leading and trailing bits of dx(i) as though it were in double preci-
sion. Iteration continues subject to the same progress monitoring scheme. This significantly
improves accuracy on the most ill-conditioned problems.

• Iteration halts if consecutive iterates x(i) differ little enough (measured in both normwise
and componentwise senses), or if consecutive increments dx(i) do not decrease fast enough
(despite representing dx(i) in doubled working precision), or if the maximum iteration count
is exceeded.

4

• If a computed error bound exceeds a threshold (currently
√

εw), then it is set to 1, indicating
that the algorithm cannot produce a reliable error bound.

Extensive numerical tests on over two million 100× 100 test matrices are reported in Section 6.
(Similar results were obtained on two million 5 × 5 matrices, two million 10 × 10 matrices, and
2 ·105 1000×1000 matrices.) These test cases include a variety of scalings, condition numbers, and
ratios of maximum to minimum components of the solution; see Section 5 for details on how the
test cases were generated.

We summarize the results of these numerical tests. First we consider the normwise error and
error bound. For not-too-ill-conditioned problems, those where κnorm(A) < 1/γεw, Algorithm 3
always computed an error bound of at most 2γεw, which exceeded the true error. Since the
algorithm computes κnorm(A), these cases are easily recognized.

For even more ill-conditioned problems, with normwise condition numbers κnorm ranging up
past ε−2

w , Algorithm 3 still gets similarly small normwise error bounds and true errors in 96.4% of
cases. Convergence failure was reported in 3.4% of cases, and of the remaining 0.2% of cases (only
1800 out of nearly 1.2 million) the ratio of error bound to true error was in the range (0.1, 10) all
but 32 times, and never outside (.02, 282). Details are reported in Section 6.1.

Next we consider the componentwise error and error bound. For not-too-ill-conditioned prob-
lems, those where κcomp(A) < 1/γεw, Algorithm 3 always computed an error bound of at most
2γεw, which again exceeded the true error. The number of iterations required was at most 4, with
a median of 2. Since the algorithm computes κcomp(A), these cases are easily recognized.

For even more ill-conditioned problems, with componentwise condition numbers κcomp ranging
up past ε−2

w , Algorithm 3 still gets similarly small componentwise error bounds and true errors
in 94% of cases. Convergence failure was reported in 2.9% of cases, and of the remaining 3.1%
of cases (45100 out of over 1.4 million) the ratio of error bound to true error was in the range
(0.1, 10) all but 1900 times, and never outside (.007, 541). The median number of iterations for
these ill-conditioned cases was 4, with a maximum of 33. Details are reported in Section 6.2.

The rest of Section 6 compares Algorithm 3 to Wilkinson’s original algorithm (Algorithm 4)
and the single precision routine currently in LAPACK (Algorithm 5) (it is more accurate than
either one), and explores the impact of various design parameters on the behavior of Algorithm 3.
In particular, we can make Algorithm 3 more or less aggressive in trying to converge on difficult
problems; the above data is for our recommended “cautious” settings of these parameters.

Our use of extended precision is confined to two routines for computing the residual r(i) =
Ax(i) − b, one where all the variables are stored in working precision, and one where x(i) is stored
as a pair of vectors each in working precision: r(i) = Ax(i) + Ax

(i)
t − b. The first operation

r(i) = Ax(i) − b is part of the recently completed new BLAS standard [5], for which portable
implementations exist [17]. It is critical for the accuracy of the routine. The second operation
r(i) = Ax(i) + Ax

(i)
t − b was not part of the new BLAS standard because its importance was not

recognized. Nevertheless, it is straightforward to implement in a portable way using the same
techniques as in [17]. The importance of this second operation is quantified in Section 6.4.1, where
it is shown to significantly improve accuracy for the most ill-conditioned matrices.

The rest of this paper is organized as follows. Section 2 describes the error analysis of Al-
gorithms 1 and 2 in detail, including their invariance under column scaling. Section 3 describes
the ultimate algorithm, Algorithm 3, including the parameters for the stopping criterion and error
bound, and how the bound for (2) is computed. Section 4 describes related work, including our

5

variation of Wilkinson’s original algorithm (Algorithm 4) and LAPACK’s version of Skeel’s iterative
refinement, (Algorithm 5) which we have modified to compute a componentwise error bound; both
Algorithms 4 and 5 are compared in numerical experiments to Algorithm 3. Section 5 describes
the test configuration, including the extra precision BLAS, platforms tested on, how test matrices
are generated, and how the true error is computed. Section 6 presents the results of extensive
numerical tests, and uses them to justify the the details of Algorithm 3 not justified by the error
analysis of Section 2. Section 7 gives rare examples for which Algorithm 3 can fail. Section 8
presents the Fortran 77 [14] interface to the proposed new routines to be included in LAPACK.
Finally Section 9 draws conclusions and describes future work.

2 Error Analysis

Algorithm 1 contains the basic computational steps but lacks termination criteria, error estimates,
or specifications of the accuracy to which each step is performed. Let the true forward error of
iteration i be denoted by e(i) def= x(i)−x. The analysis below shows that both ‖e(i)‖∞ and ‖dx(i)‖∞
decrease in nearly the same way as rough geometric sequences until refinement hits its limiting
precision. Monitoring the rate of decrease of ‖dx(i)‖∞ lets us estimate how ‖e(i)‖∞ decreases and
so provides both termination criteria and an error estimate. Moreover, scaled solutions follow a
similar geometric progression, which we use in Section 2.3 to estimate the componentwise error.
For related analyses of iterative refinement, see [10, 13].

The first contribution of this section is to show how to derive error bounds not just for the
normwise relative error (1) but for the scaled relative error (2) for any diagonal scaling C. In
addition to error bounds, we show how to modify the stopping criterion depending on C, and how
to define and estimate the corresponding condition number. This estimated condition number can
be used by the user to distinguish cases where convergence to a correct and tiny error bound is
“guaranteed” (according to our numerical tests in Section 6) from those extremely ill-conditioned
cases where such convergence is only highly likely (see Sections 6.5 and 7).

Refinement’s precision is limited by the precision of its intermediate computations and storage
formats. Computing with extra precision extends the limit, but mixing precisions requires account-
ing for errors in both computation and storage. We use the notation of a machine epsilon ε to
model both concepts. A floating-point datum stored or computed with precision ε has a base-β
significand with − logβ ε digits. Note that a precision εr is considered greater than precision εw

when εr < εw. This analysis ignores over- and underflow.
Our refinement algorithm uses three different precisions distinguished with subscripts: εw, εx,

and εr. The input data A and b are assumed to be stored exactly in the working precision εw.
We also assume that any factorization of A is carried out in precision εw with results stored in
εw. In our numerical experiments, εw is IEEE754 single precision [2], so β = 2 and εw = 2−24.
The residual r(i) and step dx(i) are also stored to precision εw, but the solution x(i) is stored and
updated to precision εx ≤ εw, where possibly εx ≤ ε2

w if necessary for componentwise convergence.
The criteria for choosing εx is discussed in Section 2.4. Residuals are calculated to extra precision
εr with εr � εw (typically εr ≤ ε2

w). For our single-precision experiments, the residual is calculated
in double precision with εr = 2−53 and additional exponent range. The computed x(i) is carried
either in single (εx = εw = 2−24) or in a doubled single precision (εx = ε2

w = 2−48). We base our
experiments on single precision to ease testing; see Section 5 for details. Section 3 describes how,
why, and when x(i) is carried to a doubled single precision.

6

The computed results r(i), dx(i+1), and x(i+1) from iteration i of Algorithm 1 satisfy the expres-
sions

r(i) = Ax(i) − b + δr(i) where |δr(i)| ≤ nεr(|A| · |x(i)|+ |b|) + εw|r(i)|; (3)

dx(i+1) = (A + δA(i+1))−1r(i) where |δA(i+1)| ≤ 3nεw|L| · |U |; and (4)

x(i+1) = x(i) − dx(i+1) + δx(i+1) where |δx(i+1)| ≤ εx|x(i+1)|. (5)

Absolute values of matrices and vectors are interpreted elementwise.
The rounding error terms, those prefixed with δ, cannot be computed directly. Bounds for these

terms are derived in standard ways [10, 13]. The residual is first computed to precision εr and then
stored into precision εw. The error in Equation (5) is the error from representing the updated
solution vector x in precision εx. The bound on the backward error δA(i) comes from the standard
analysis of Gaussian elimination, absorbing row permutations into L. The error in Equation (4)
affects iterative refinement’s convergence rate but not its limiting accuracy so long as the errors do
not prevent convergence [10, 13].

The only restriction we place on the solution method is homogeneity with respect to column
scaling. The scaling and componentwise analysis in Sections 2.2 and 2.3 assumes that multiplying
a column of A by a power of the floating point radix β only multiplies the corresponding column of
δA(i) by the same factor. This is true for any reasonable implementation of Gaussian elimination
except when Strassen-like algorithms are used for internal matrix products. Thus, the scaling
analysis in Section 2.2 does not hold when Strassen-based BLAS are used. We have not tested such
methods, and we do not know how they behave.

2.1 Normwise Error Estimate

Combining Equations (3)-(5) provides very similar recurrences governing the error e(j) and step
dx(j). These recurrences provide an estimate of the normwise error at each step. To get a recurrence
for e(j+1), one substitutes equation (3) into equation (4), solves equation (4) for dx(j+1), substitutes
into (5), and subtracts x from both sides to get

e(j+1) = (I + A−1δA(j+1))−1(A−1δA(j+1)) · e(j) − (A + δA(j+1))−1 · δr(j) + δx(j+1), (6)

One may similarly derive

dx(j+1) =(I + A−1δA(j+1))−1(A−1δA(j)) · dx(j)

− (A + δA(j+1))−1 · (δr(j) − δr(j+1)) + (I + A−1δA(j+1)) · δx(j+1).
(7)

Assume for the moment that extra precision renders the δr(j), δr(j+1), and δx(j+1) terms neg-
ligible, leaving δA(j) and δA(j+1) as the only sources of error. This is a good approximation until
convergence occurs. Before convergence, then, the above equations simplify to

e(j+1) = (I + A−1δA(j))−1(A−1δA(j)) · e(j)

and
dx(j+1) = (I + A−1δA(j+1))−1(A−1δA(j)) · dx(j) . (8)

7

Comparing these two equations we see that dx(j+1) and e(j+1) decrease by being multiplied by very
similar matrices at each step.

Rewriting e(j+1) as
e(j+1) = (A−1δA(j))(I + A−1δA(j))−1 · e(j)

and multiplying by (I + A−1δA(j+1))−1 leads to the “pseudo-error” expression

[(I + A−1δA(j+1))−1 · e(j+1)] = (I + A−1δA(j+1))−1(A−1δA(j)) · [(I + A−1δA(j))−1 · e(j)] . (9)

This “pseudo-error” (I + A−1δA(j))−1 · e(j) as well as dx(j) both decrease by being multiplied by
identical matrices at each step. The pseudo-error differs from the true error e(j+1) by multiplication
to the left with a matrix close to the identity. We conclude that the error e(j) and the increment
dx(j) decrease in nearly the same way as long as roundoff terms δr(j+1) and δx(j+1) are negligible,
and that the decrease is roughly geometric, with ‖dx(j)‖∞ and ‖e(j)‖∞ decreasing by a factor of at
most about ‖(I + A−1δA(j+1))−1(A−1δA(j))‖∞.

Continuing to ignore roundoff terms δr(j+1) and δx(j+1), and assuming that the algorithm
converges, we see that

x = x(1) −
∞∑

j=2

dx(j)

= x(i) −
∞∑

j=i+1

dx(j),

so that

e(i) = x(i) − x =
∞∑

j=i+1

dx(j),

and

‖e(i)‖∞ = ‖x(i) − x‖∞ = ‖
∞∑

j=i+1

dx(j)‖∞ ≤
∞∑

j=i+1

‖dx(j)‖∞ . (10)

Since we are assuming that ‖dx(j)‖∞ decreases geometrically, we substitute the easily computed
maximum ratio

ρmax
def= max

j≤i

‖dx(j+1)‖∞
‖dx(j)‖∞

. (11)

into equation (10) to estimate

‖e(i)‖∞ ≤
∞∑

j=i+1

‖dx(j)‖∞ ≤ ‖dx(i+1)‖∞
∞∑

j=i+1

ρj−i−1
max = ‖dx(i+1)‖∞/(1− ρmax) . (12)

To account for rounding errors that become more dominant near convergence, we make sure
our final bound is at least γεw with γ = max{10,

√
n}. The lower bound of 10 protects against

condition number underestimates and makes the error bound larger than the true error for small
systems. We do not expect systems with n < 100 to achieve < 10εw relative accuracy (all but the
last digit) through refinement. Altogether, the final normwise error bound is

Bnorm
def= max

{
‖dx(i+1)‖∞/‖x(i)‖∞

1− ρmax
, γεw

}
≈ ‖x

(i) − x‖∞
‖x‖∞

def= Enorm . (13)

8

For empirical comparisons of various alternative error bounds and justification of our choice Bnorm,
see section 6.4.

2.2 Equilibration and Choice of Scaled Norms

Equilibration refers to replacing the input matrix A by As = R · A · C before factorization, where
R and C are diagonal scaling matrices. The LAPACK equilibration routine we use first scales each
row by dividing its entries by the row’s largest magnitude entry. Columns are scaled likewise, taking
into account the row scaling. We have modified this LAPACK routine to scale only by powers of
the radix, so scaling does not introduce rounding errors unless some entry over- or underflows. This
scaling leaves As with approximately unit row and column infinity-norms.

Equilibration reduces the likelihood of subsequent over- and underflow. Equilibration can also
reduce ill-conditioning that is a by-product of ill-scaling. When A suffers from some forms of
ill-scaling, the equilibrated κs ≡ κ∞(As) = ‖A−1

s ‖∞ ‖As‖∞ can be much smaller than κ∞(A).
Later we will use various scaled condition numbers to separate cases where our algorithm performs
reliably from those with no guarantees.

Directly applying the previous analysis to refining Asy
(i) = bs, where bs = R · b, provides an

estimate of ‖y − y(i)‖∞ = ‖C−1(x− x(i))‖∞ rather than ‖x− x(i)‖∞. Assuming the user wants an
error estimate for x(i) and not y(i), we must modify our error bounds.

To unscale the norm, the refinement algorithm applies the column scaling and computes

‖dx(i+1)‖∞ = ‖Cdy(i+1)‖∞ and ‖x(i)‖∞ = ‖Cy(i)‖∞

without computing dx(i+1) and x(i) directly. Algorithm 2 uses an equilibrated factorization but
evaluates the error estimate in the user’s norm. The algorithm also considers the user’s solutionx(i)

rather than the scaled solution y(i) in the un-specified termination criteria.

Input: An n× n matrix A, and an n× 1 vector b
Output: A solution vector x(i) approximating x in Ax = b, and

an error bound ≈ ‖x(i)−x‖∞/‖x‖∞
Equilibrate the system: As = R ·A · C, bs = R · b
Solve Asy

(1) = bs using the basic solution method
i = 1, ρmax = 0, ‖dx(1)‖∞ =∞
repeat

Compute residual r(i) = Asy
(i) − bs

Solve As dy(i) = r(i) using the basic solution method
Compute ‖dx(i+1)‖∞ = ‖Cdy(i+1)‖∞
ρmax = max{ρmax, ‖dx(i+1)‖∞/‖dx(i)‖∞}
n(i) = ‖dx(i+1)‖∞/‖x(i)‖∞ = ‖Cdy(i+1)‖∞/‖Cy(i)‖∞
Update y(i+1) = y(i) − dy(i+1)

i = i + 1
until x(i) = Cy(i) is “accurate enough”
return x(i) = Cy(i)

and the normwise relative error bound max
{

1
1−ρmax

· n(i), max{10,
√

n} · εw

}
Algorithm 2: Iterative refinement with equilibration

9

Can we expect convergence in the user’s norm (i.e. decreasing ‖dx(i)‖∞) with scaling C? To
illustrate possible limits on C we continue to ignore δr(i) and δx(i+1) terms and observe that after
equilibration by C equation (8) becomes

dx(i+1) = Cdy(i+1) = C(I + A−1
s δAs)−1A−1

s δAsC
−1dx(i) def= CÂsC

−1 · dx(i)

so
‖dx(i+1)‖∞ ≤ ‖CÂsC

−1‖∞ · ‖dx(i)‖∞ .

To guarantee that ‖dx(i+1)‖∞ decreases, we ask what limits on C guarantee that ‖CÂsC
−1‖∞ < 1.

This last inequality may be rewritten in the equivalent form C|Âs|C−11 < 1, where 1 is the vector
of all ones, or |Âs|c < c where c = C−11 is the vector of diagonal entries of C−1. This last inequality
limits the entries of C−1 to a certain homogeneous polytope. The smaller Âs is, the more values of
c this polytope includes.

But clearly if some entry of c is too small (some diagonal entry of C is too large), then there
may be convergence difficulties, even if As is well-conditioned. Because row scaling does not change
‖x‖∞ or ‖y‖∞ (barring over- and underflow), our termination criteria are row-scaling invariant. To
identify potentially difficult cases, we may use a row-scaled condition number

κnorm = κ∞(As · C−1) = κ∞(R ·A). (14)

Here R and C are the equilibration factors from our modified LAPACK scaling routine. Note that
typically κnorm ≤ κ∞(A), and κnorm may be much smaller if A is badly row equilibrated.

2.3 Componentwise Error Estimate

Just as we could estimate the infinity norm’s error bound for x(i) = Cy(i) in Algorithm 2, we
estimate an error bound in the infinity norm for any diagonally scaled z(i) = Czy

(i). For example,
if we were able to choose Cz so that Czy = 1, i.e. so z(i) is converging to the vector of all ones, then
the infinity norm error in z(i) would be identical to the largest relative error in any component.
We could then modify Algorithm 2 to keep track of different values of n(i) and ρmax (call them n

(i)
z

and ρmax,z), and so different error bounds for both C and Cz.
The only tricky part is that we seemingly need to know the answer y in order to determine Cz.

If some components of y change significantly in early iterations, then Cz will change significantly
and our estimates for ρmax,z and n

(i)
z will be poor. In practice, however, we only need to know

each component of y approximately, so our approach is to wait until the relative change in each
component of y is at most 0.25, and then choose Cz so that Czy

(i) = 1. Note that Cz is only used
to compute error bounds, not the iterates themselves, so there is no need to round entries of Cz to
the nearest powers of β as was the case with the equilibration matrix C. With this choice of Cz,
our componentwise relative error bound becomes

Bcomp
def= max

{
‖Czdy(i+1)‖∞

1− ρmax,z
, γεw

}
≈ max

k

∣∣∣∣∣x
(i)
k − xk

xk

∣∣∣∣∣ def= Ecomp. (15)

Here γ = max{10,
√

n} as in Section 2.1, protecting against condition number underestimates and
making the limit attainable for small systems.

10

As discussed in the previous section, we expect convergence difficulties when diagonal entries of
Cz are widely varying. Again we use a scaled condition number to determine potentially difficult
cases. This “componentwise” condition number is

κcomp = κ∞(As · C−1
z) = κ∞(As · diag(y)) = κ∞(R ·A · diag(x)). (16)

The same technique may be applied to LAPACK’s current single precision refinement algorithm
in SGERFS. Scaling by x(i) in LAPACK’s forward error estimator produces the loose componentwise
error estimate

Bcomp ≈ ‖C−1
z · |A−1| · (|r|+ (n + 1)εw(|A||y|+ |b|)) ‖∞.

As we will see in Section 6, this estimate is reliable for single-precision refinement. However,
LAPACK’s refinement routine targets backward error, so the forward errors can be quite large for
ill-conditioned linear systems.

2.4 Termination Criteria and Employing Additional Precision

The contributions of δr and δx determine the remaining piece of our algorithm: termination crite-
ria. These errors prevent ‖e(i)‖∞ from becoming arbitrarily small, halting its geometric decrease.
Equation (13)’s error estimate relies on that geometric decrease, so the error bound becomes un-
reliable once δr and δx become significant. To maintain a reliable error estimate, our algorithm
employs three termination criteria. Refinement halts when

1. the error estimate stops decreasing.

2. the step dx(i+1) fails to change x(i) significantly, or

3. we have invested too much work (iterated too many times).

Additionally, we increase the precision used to store x(i) the first time the error estimate stops
decreasing (if we have not already converged and terminated). This section deals with the normwise
stopping criteria. The componentwise criteria are similar. Section 3 makes explicit the criteria and
their interplay.

Refinement’s failure to decrease the error estimate is strong empirical evidence that the errors
δr and δx have become significant. We determine that refinement has reached its limiting precision
when the step to the next solution no longer satisfies ‖dx(i+1)‖∞ < ρthresh‖dx(i)‖∞ for a threshold
ρthresh satisfying 0 < ρthresh ≤ 1. Thus refinement will

stop if
‖dx(i+1)‖∞
‖dx(i)‖∞

≥ ρthresh. (17)

The experiments in Section 6 justify setting ρthresh = 0.5 as a cautious approach that rarely yields
significant over- or underestimates of errors. Setting ρthresh = 0.9 enables an aggressive approach
that converges more often on extremely ill-conditioned matrices. Additionally, we use this criterion
to trigger changing εx from εw to ≈ ε2

w; see Section 3 for details.
Geometrically decreasing step sizes drive dx(i+1) down to where it no longer significantly changes

x(i). Further refinement cannot improve the solution. Thus refinement will

stop if
‖dx(i+1)‖∞
‖x(i)‖∞

≤ εw. (18)

11

Continuing refinement beyond either of these criteria rarely changes the computed solution but
may affect the error estimate. While criterion (17) is satisfied, updating a stored ‖dx(i+1)‖∞/‖dxi‖∞
leads to overestimating the true error. Updating a stored, final ‖dx(i+1)‖∞/‖x(i)‖∞ while either cri-
terion holds may severely underestimate the error. Each of these criteria can be applied to any
scaled norm ‖C(·)‖∞ to check progress and conversion.

The final stopping criterion is a purely pragmatic limit on the number of iterations, which we
call ithresh:

stop if i > ithresh. (19)

As seen in Section 6, an aggressively large ρthresh (i.e. close to 1) can require a large number of
iterations to satisfy criteria (17)-(18). A low ρthresh can also be used to limit the maximum number
of iterations, but we have found that a low ρthresh prematurely terminates some refinements that
are converging acceptably quickly, except for a single step with a large ratio ‖dx(i+1)‖∞/‖dx(i)‖∞.

3 Algorithmic Details

Using the error estimates and termination criteria established above, we now describe our ultimate
iterative refinement procedure, Algorithm 3. Our ultimate goal is an implementation with small
run-time relative to Gaussian elimination. All norms in this section are the infinity norm. The
algorithm refers to an auxiliary vector y, but the implementation stores y in place of x to minimize
storage. We first scale A by R and C to As = R ·A · C, where R and C are diagonal equilibration
matrices with each diagonal entry being a power of the radix β. Then we solve the equilibrated
system Asy = bs, where y = C−1x, bs = Rb. We perform the triangular factorization on the
equilibrated As and proceed to refine Asy = bs. We also call a condition number estimator to
estimate κs = κ∞(As) for later use.

Algorithm 3 tracks the convergence state of x and z in the variables x-state ∈ {working,
no-progress, converged} and z-state ∈ {unstable, working, no-progress, converged}, respectively. State
variable y-scheme ∈ {single, double} denotes the precision used for storing and computing with y.
The refinement loop exits either from a large iteration count or when both x and z are no longer
in a working state (see line 18).

The algorithm computes a step dy(i+1) for each iteration i. The error estimates and termination
criteria require ‖x(i)‖ and ‖dx(i+1)‖. We transform vectors on the fly with ‖x(i)‖ = ‖Cy(i)‖ and
‖dx(i+1)‖ = ‖Cdy(i+1)‖ and avoid storing x or dx. Because C’s entries are powers of the radix, the
transformation is exact.

We obtain componentwise estimates as suggested in Section 2.3. Vector dz denotes the comp-
onentwise step in the estimates and termination criteria. We define dz

(i+1)
k = dy

(i+1)
k /y

(i)
k . Taking

the norm ‖dz(i+1)‖ = maxk |dy
(i+1)
k |/|y(i)

k | gives the largest componentwise change. The quantity
‖dz(i+1)‖ is computed without storing dz.

The stopping criteria are applied to both the infinity norm error and componentwise relative
error. Procedure new-x-state (called from line 15 in Algorithm 3) tests criteria (17) and (18) against
‖x(i)‖ and ‖dx(i+1)‖ for the normwise error. The componentwise error is already a relative error,
so the tests in Procedure new-z-state (called from line 16 in Algorithm 3) require only ‖dz(i+1)‖.

If a solution fails to make progress by one measure but continues in another, the algorithm tests
the “halted” measure to see if progress resumes. This test is on the first line of Procedure new-
x-state and the second line of Procedure new-z-state. Criterion (17) should halt refinement only

12

when enough error has accumulated to render all of the remaining steps inaccurate. The resumption
tests allow for unexpected round-off in any single step and greatly improve convergence results on
ill-conditioned problems.

Early in the iteration, the computed y(i) may be somewhat far from y componentwise, and
our scaling by y(i) for componentwise quantities may be unreliable. Thus componentwise error
is considered only after each component of the solution y is stable. We consider y stable if no
component’s relative change is more than dzthresh. The error is roughly approximated by ‖dz(i+1)‖,
so requiring a conservative dzthresh should require some componentwise accuracy. This dzthresh is
set to 0.25 in our code, requiring only that the first bit is stable. With too large of a dzthresh, the
ratio of two consecutive dz grows too large for criterion (17) and stops refinement too early. So
before checking for criterion (17), Procedure new-z-state re-evaluates the solution’s stability and
possibly marks it as unstable. The value of 0.25 appears to work well for binary arithmetic, but
another value may be necessary for other bases.

We always stop if the iteration count exceeds ithresh. The count measures the number of solves
Ax = b or Adx(i+1) = r(i) performed. Criterion (19) differs from the other two because it can ter-
minate refinement even while the current dy(i+1) improves the solution. In this case, the algorithm
adds the dy(i+1) but still uses it to estimate the error. This could lead to a significant overestimate
of the true error.

In Section 2 we discussed using additional precision to store and compute with the current
iterate. A doubled arithmetic [19] provides this extra precision. Doubled arithmetic represents an
extra-precise number as the sum of a pair of separately stored floating-point values, say f and ft.
The “tail” ft serves as a slight correction to f that would be lost to round-off if f +ft were actually
computed in floating-point arithmetic. Thus an additional n × 1 vector y

(i)
t is needed to hold the

tails of the components of y(i). The tail fits into workspace already available, and we can return
y(i) as the final result without additional work.

Using a doubled precision εx ≤ ε2
w for storing y(i) increases the cost of each iteration, penalizing

common, “easy” linear systems. We only use this extra precision when it appears necessary. The
progress criterion (17) triggers when the errors δr and δx become significant. The δr is already
O(ε2

w), so the only action remaining is to reduce δx. So if either the normwise error or the comp-
onentwise error stops making progress before convergence, the algorithm doubles the representation
used for y(i). Extra precision in y(i) often leads the algorithm to good componentwise error even
when the true solution has components of widely different magnitudes; see section 6 for details.

In our earlier experiments, we found that a variant of Algorithm 3 without the test in line 14
could drastically underestimate the solution’s componentwise errors even for apparently well-
conditioned systems when measured by κs = κ∞(As). As explained in Section 7.2, this is the wrong
condition number for the componentwise result. The condition number κcomp = κ∞(R ·A ·diag x) =
κ∞(As · diag y) more accurately reflects the contributions of round-off in the update step. The test
in line 14 uses κ∞(As) · κ∞(diag y) ≥ κcomp to trigger using extra precision to store and update y.
This eliminates the underestimates at little cost.

The initialization in line 4 plays three roles. First, it ensures that ρmax computed on the first
iteration is 0. Second, termination because ithresh = 1 will return error bounds of ∞. Finally,
termination with z-state = unstable will return a componentwise error estimate of ∞. The tests in
lines 23 and 24 store the final ‖dx‖ or ‖dz‖ if the iteration count exceeds ithresh while x or z is still
making progress.

The states and transitions are shown graphically in Figure 1 using UML 1.4 notation [23]. The

13

transitions are guarded by expressions in square brackets ([]) or triggered by events. The only
event is incr-prec, which is raised in internal transitions to trigger increased precision. Note that
the algorithm can terminate without using extra precision for y. The precision is raised only when
necessary.

Input: An n× n matrix A, an n× 1 vector b
Output: A solution vector x(i) approximating x in Ax = b,

a normwise error bound ≈ ‖x(i) − x‖/‖x‖, and
a componentwise error bound ≈ maxk |x(i)

k − xk|/|xk|
Equilibrate the system: As = R ·A · C, bs = R · b
Estimate κs = κ∞(As)
Solve Asy

(1) = bs using the basic solution method
4 ‖dx(1)‖ = ‖dz(1)‖ = final-relnormx = final-relnormz =∞

ρmax,x = ρmax,z = 0.0, x-state = working, z-state = unstable, y-scheme = single
6 for i = 1 to ithresh do

// Compute residual in precision εr

if y-scheme = single then r(i) = Asy
(i) − bs

else r(i) = As(y(i) + y
(i)
t)− bs, using doubled arithmetic

// Compute correction to y(i)

Solve As dy(i+1) = r(i) using the basic solution method
// Check error-related stopping criteria

Compute ‖x(i)‖ = ‖Cy(i)‖, ‖dx(i+1)‖ = ‖Cdy(i+1)‖ and ‖dz(i+1)‖ = maxj

∣∣∣dy
(i+1)
j /y

(i)
j

∣∣∣
14 if y-scheme = single and κs · maxj |yj |/minj |yj | ≥ 1/γεw then incr-prec = true
15 Update x-state, ρmax,x with Procedure new-x-state below
16 Update z-state, ρmax,z with Procedure new-z-state below

// Either update may signal incr-prec or may set its final-relnorm .
18 if x-state 6= working and z-state 6= working then BREAK
19 if incr-prec then y-scheme = double, incr-prec = false, and y

(i)
t = 0

// Update solution
if y-scheme = single then y(i+1) = y(i) − dy(i+1)

else (y(i+1) + y
(i+1)
t) = (y(i) + y

(i)
t)− dy(i+1) in doubled arithmetic

23 if x-state = working then final-relnormx = ‖dx(i+1)‖/‖x(i)‖

24 if z-state = working then final-relnormz = ‖dz(i+1)‖
return x(i) = Cy(i),

normwise error bound max
{

1
1−ρmax,x

· final-relnormx, max{10,
√

n} · εw

}
, and

componentwise error bound max
{

1
1−ρmax,z

· final-relnormz, max{10,
√

n} · εw

}
Algorithm 3: New iterative refinement

14

Input: Current x-state, ‖x(i)‖, ‖dx(i)‖, ‖dx(i−1)‖, y-scheme
Output: New x-state and ρmax,x, possibly signaling incr-prec or updating final-relnormx

if x-state = no-progress and ‖dx(i+1)‖/‖dx(i)‖ ≤ ρthresh then x-state = working
if x-state = working then

if ‖dx(i+1)‖/‖x(i)‖ ≤ εw then x-state = converged // Criterion (18), tiny dx

else if ‖dx(i+1)‖/‖dx(i)‖ > ρthresh then
if y-scheme = single then incr-prec = true
else x-state = no-progress // Criterion (17), lack of progress

else ρmax,x = max{ρmax,x, ‖dx(i+1)‖/‖dx(i)‖}
if x-state 6= working then final-relnormx = ‖dx(i+1)‖/‖x(i)‖

Procedure new-x-state

Input: Current z-state, ‖dz(i)‖, ‖dz(i−1)‖, y-scheme
Output: New z-state and ρmax,z, possibly signaling incr-prec or updating final-relnormz

if z-state = unstable and ‖dz(i+1)‖ ≤ dzthresh then z-state = working
if z-state = no-progress and ‖dz(i+1)‖/‖dz(i)‖ ≤ ρthresh then z-state = working
if z-state = working then

if ‖dz(i+1)‖ ≤ εw then z-state = converged // Criterion (18), tiny dz

5 else if ‖dz(i+1)‖ > dzthresh then
z-state = unstable, final-relnormz =∞, ρmax,z = 0.0

else if ‖dz(i+1)‖/‖dz(i)‖ > ρthresh then
if y-scheme = single then incr-prec = true
else z-state = no-progress // Criterion (17), lack of progress

else ρmax,z = max{ρmax,z, ‖dz(i+1)‖/‖dz(i)‖}
if z-state 6= working then final-relnormz = ‖dz(i+1)‖

Procedure new-z-state

4 Related Work

Extra precise iterative refinement was proposed in the 1960s. In [6], Wilkinson et al. presents
the Algol programs that perform the LU factorization, the triangular solutions, and the iterative
refinement using εr = ε2

w. The detailed algorithm is as follows (with some changes described
afterward):

15

Iterative Refinement

entry / ‖dx(1)‖∞ = ‖dz(1)‖∞ = final-relnormx = final-relnormz =∞, ρmax,x = ρmax,z = 0.0
κs · maxj |y

(i)
j |/mink |y

(i)
j | ≥ 1/nεw (As · diag y is ill-conditioned) / ↑ incr-prec

exit / calculate error estimates

x-state z-state y-scheme

unstable

entry / final-relnormz =∞,
ρmax,z = 0.0

working

do / update ρmax,x

no progress in x / ↑ incr-prec

exit / save ρ
(i)
x in

final-relnormx

working

do / update ρmax,z

no progress in z / ↑ incr-prec

exit / save ρ
(i)
z in

final-relnormz

finished finished

single

double

entry / clear tail yt

incr-prec

[dz(i+1) is small] [dz(i+1)

is large]

[
converged or
(no progress

and double)
] [progress

possible]

[
converged or
(no progress

and double)
] [progress

possible]

too many iterations

Figure 1: Overall statechart for Algorithm 3. The no-progress and converged states are merged into finished
here.

16

Input: An n× n matrix A, and an n-long vector b
Output: A solution vector x(i) approximating x in Ax = b,

a normwise error bound ≈ ‖x(i) − x‖∞/‖x‖∞
Solve Ax(1) = b using the basic solution method
i = 1
repeat

Compute residual r(i) = Ax(i) − b
Solve A dx(i+1) = r(i) using the basic solution method
Update x(i+1) = x(i) − dx(i+1)

i = i + 1
until i > ithresh or ‖dx(i)‖∞/‖dx(i−1)‖∞ > 0.5 or ‖dx(i)‖∞/‖x(i)‖∞ ≤ 2εw

Compute ρmax,x = max1≤j≤i ‖dx(j+1)‖∞/‖dx(j)‖∞

return x(i) and a normwise error bound Bnorm = max
{

1
1−ρmax,x

‖dx(i)‖∞
‖x(i)‖∞

,
√

nεw

}
Algorithm 4: Wilkinson’s iterative refinement

In the basic solution method, Wilkinson uses the Crout algorithm for LU factorization, in which
the inner products are performed in extra precision. The Crout algorithm was natural in those
pre-BLAS days, but it cannot use high level BLAS routines, and is slow on current hierarchical
memory systems. As noted in Section 2, higher precision inner products in the LU factorization
only change the constant in the O(·) term of Equation (4), and do not affect our overall error
analysis. Therefore, Section 6’s comparison uses the same optimized version of GEPP (with Level
3 BLAS) as the basic solution method for all flavors of iterative refinement since that is the natural
thing to do with today’s technology.

Wilkinson’s algorithm differs from ours in several ways:

• There is no initial equilibration in Wilkinson’s algorithm.

• ρthresh is fixed to 0.5 in Wilkinson’s algorithm.

• Wilkinson’s algorithm does not store x to additional precision.

• Wilkinson’s algorithm does not attempt to achieve componentwise accuracy.

• The original paper’s algorithm [6] does not return an error bound. We add the error bound
in Algorithm 4 based on our error analysis in Section 2.

There is no error analysis in [6]. But in [35], Wilkinson analyzes the convergence of the re-
finement procedure in the presence of roundoff errors from a certain type of scaled fixed point
arithmetic. Moler extends Wilkinson’s analysis to floating point arithmetic. Moler accounts for
the rounding errors in the refinement process when the working precision is εw and the residual
computation is in precision εr, and derives the following error bound [22, Eq. (11)]:

‖x(i) − x‖∞
‖x‖∞

≤ [σκ∞(A)εw]i + µ1εw + µ2nκ∞(A)εr ,

where σ, µ1, and µ2 are functions of the problem’s dimension and condition number as well as
refinement’s precisions. Moler comments that “[if] A is not too badly conditioned” (meaning that
0 < σκ∞(A)εw < 1), the convergence will be dominated by the last two terms, and µ1 and µ2

17

are usually small. Furthermore, when εr is much smaller than εw (e.g., εr ≤ ε2
w), the limiting

accuracy is dominated by the second term. When εr ≤ ε2
w, the stopping criterion he uses is

‖x(i) − x(i−1)‖∞ ≤ εw‖x(1)‖∞. As for ithresh, he suggests using the value near − log10 εr ≈ 16.
The use of higher precision in computing x was first presented as an exercise in Stewart’s

book [30, p. 207-208]. Stewart suggests that if x is accumulated in higher and higher precision,
say in εw, ε2

w, ε3
w, . . . precisions, the residual will get progressively smaller. Eventually the iteration

will give a solution with any desired accuracy. Kie lbasiński proposes an algorithm called binary
cascade iterative refinement [16]. In this algorithm, GEPP and the first triangular solve for x(0)

are performed in a base precision. Then during iterative refinement, both r(i) and x(i+1) are
computed in increasing precision. Furthermore, the correction dx(i) is also computed in increasing
precision by using the same increasing-precision iterative refinement process. That is probably
why it has “cascade” in its name; the algorithm was in fact formulated recursively. Kie lbasiński
analyzes the algorithm and shows that with a prescribed accuracy for x, you can choose a maximum
precision required to stop the iteration. This algorithm requires arbitrary precision arithmetic, often
implemented in software and considered too slow for wide use. We are not aware of any computer
program that implements this algorithm.

A very different approach towards guaranteeing accuracy of a solution is to use interval arith-
metic techniques [27, 28]. Interval techniques provide guaranteed bounds on a solution’s error.
However, intervals alone do not provide a more accurate solution. Intervals indicate when a solution
needs improving and could guide application of extra precision. We will not consider interval algo-
rithms further, although they are an interesting approach. We do not have a portable and efficient
interval BLAS implementation and so cannot fairly compare our estimates with an interval-based
algorithm.

Björck [3] nicely surveys the iterative refinement for linear systems and least-squares prob-
lems, including error estimates using working precision or extra precision in residual computation.
Higham’s book [13] gives a detailed summary of various iterative refinement schemes which have
appeared through history. Higham also provides estimates of the limiting normwise and comp-
onentwise error. The estimates are not intended for computation but rather to provide intuition on
iterative refinement’s behavior. The estimates involve quantities like ‖|A−1| · |A| · |x|‖∞ and require
estimating the norm of A−1. We experimented with approximating these error estimates without
using refinement within the norm estimator (which requires the solution of linear systems with A
and AT), but they provided very inaccurate normwise and componentwise bounds.

Until now, extra precise iterative refinement was not adopted in standard libraries, such as LIN-
PACK [11] and later LAPACK [1], mainly because there was no portable way to implement extra
precision when the working precision was already the highest precision supported by the compiler.
Therefore, the current LAPACK expert driver routines xGESVX only provide the working preci-
sion iterative refinement routines (εr = εw). Since iterative refinement can always ensure backward
stability, even in working precision [13, Theorem 12.3], the LAPACK refinement routines use the
componentwise backward error in the stopping criteria. The detailed algorithm is as follows, aug-
mented as described at the end of Section 2.3 to compute a componentwise error bound, for later
comparison with Algorithm 3:

18

Input: An n× n matrix A, and an n-long vector b
Output: A solution vector x(i) approximating x in Ax = b,

a normwise error bound ≈ ‖x(i) − x‖∞/‖x‖∞, and
a componentwise error bound ≈ maxk |x

(i)
k − xk|/|xk|

Equilibrate the system: As = R ·A · C, bs = R · b
Solve Asy

(1) = bs using the basic solution method
while true do

Compute residual r(i) = Asy
(i) − bs in working precision

Compute backward error

berr(i) = max
1≤k<n

|r(i)
k |(

|As||y(i)|+ |bs|
)
k

if berr(i)/berr(i−1) > 0.5 or berr(i) ≤ εw or i > ithresh then BREAK
Solve As dy(i+1) = r(i) using the basic solution method
Update y(i+1) = y(i) − dy(i+1)

i = i + 1
return x(i) = Cy(i),

norm. error bound Bnorm = ferr(i) ≈ ‖|A−1
s |(|r(i)|+(n+1)εw(|As|·|y(i)|+|bs|))‖∞

‖Cy(i)‖∞
,

comp. error bound Bcomp ≈ ‖C−1
y(i) · |A−1

s | ·
(
|r(i)|+ (n + 1)εw(|As| · |y(i)|+ |bs|)

)
‖∞ .

Algorithm 5: LAPACK working precision iterative refinement with new componentwise
error estimate

5 Testing Configuration

5.1 Review of the XBLAS

The XBLAS library is a set of routines for dense and banded BLAS routines, along with their
extended and mixed precision versions; see Chapters 2 and 4 of the BLAS Technical Forum Standard
[5]. Many routines in the XBLAS library allow higher internal precision to be used, enabling us
to compute more accurate residuals. For example, general matrix-vector multiply BLAS_sgemv_x
performs the matrix-vector multiplication y ← αAx + βy in single, double, indigenous, or extra
precision. For our experiments, A, x, y, α and β are input in precision εr = 2−24, and internally
double precision εr = 2−53 is used. See [17] for further details.

In addition to the extra precision routines provided by the XBLAS, the doubled-x scheme in
Algorithm 3 requires a new routine which we call gemv2. This routine takes a matrix A, three
vectors x, y, and z, and three scalars α, β, and γ to compute

z ← αAx + βAy + γz (20)

where the right hand side is evaluated with precision εr. This routine enables us to compute an
accurate residual when x is kept in two words, xleading and xtrailing:

r = b−A(xleading + xtrailing). (21)

19

5.2 Test Matrix Generation

To thoroughly test our algorithms, we need a large number of test cases with wide range of prop-
erties, including

• wide range of condition numbers,

• various distribution of singular values,

• well-scaled and ill-scaled matrices,

• matrices with first k columns nearly linearly dependent, and

• wide range of solution component sizes.

To achieve this goal, we generate test cases as follows:

1. Randomly pick a condition number κ with log2 κ distributed uniformly in [0, 26]. This will
be the (2-norm) condition number of the matrix before any scaling is applied.

2. We pick a set of singular values σi’s from one of the following choices:

(a) One large singular value: σ1 = 1, σ2 = · · · = σn = κ−1.

(b) One small singular value: σ1 = σ2 = · · · = σn−1 = 1, σn = κ−1.

(c) Geometrical distribution: σi = κ−
i−1
n−1 for i = 1, 2, . . . , n.

(d) Arithmetic distribution: σi = 1− i−1
n−1(1− κ−1) for i = 1, 2, . . . , n.

3. Pick k ∈ [1, n] (we randomly choose k = 3, n/2, and n). Move the largest and the smallest
singular values (picked in step above) into the first k values so that leading k columns will
be more ill-conditioned. Let Σ be the diagonal matrix with σi’s on the diagonal. Form the
matrix Ã as follows:

Ã = UΣ
(

V1

V2

)
(22)

where U , V1, and V2 are random orthogonal matrix with dimensions n, k, and n− k, respec-
tively. If κ is large, this makes the first k leading columns of Ã nearly singular, so that LU
factorization of Ã will encounter a small pivot at the k-th step. Random orthogonal matrices
are implicitly applied by performing sequences of random reflections of dimensions 2 through
n from left and right.

4. To generate x̃, we first pick a number τ with (log2 τ)1/2 uniformly distributed in [0,
√

24].∗

This will be the ratio between the largest and the smallest element (in magnitude):

τ =
maxi |x̃i|
mini |x̃i|

.

We generate x̃ by randomly choosing one of the following distributions:
∗Thus log2 τ ∈ [0, 24], but the distribution is skewed to the left. We chose this distribution as to not overload our

test samples with “hard” problems (in componentwise sense) with large κcomp = κ(RA diag(x)) = κ(As diag(y)).

20

(a) One large component: x̃1 = 1, x̃2 = · · · = x̃n = τ−1.

(b) One small component: x̃1 = x̃2 = · · · = x̃n−1 = 1, x̃n = τ−1.

(c) Geometrical distribution: x̃i = τ−
i−1
n−1 for i = 1, 2, . . . , n.

(d) Arithmetic distribution: x̃i = 1− i−1
n−1(1− τ−1) for i = 1, 2, . . . , n.

(e) Random: x̃i’s are randomly chosen from the range [τ−1, 1] such that log x̃i is uniformly
distributed.

Note that the first four distributions are the same as the ones used in step (2). Finally, if one
of the first four distribution is chosen, we multiply x̃ by a random number uniformly chosen
from the range [0.5, 1.5] to make the largest element not equal to 1 (so that all components
of x̃ have full significand).

5. We then randomly column scale the matrix Ã generated in step 3. We pick a scaling factor
δ such that (− log2 δ)1/2 is uniformly distributed in [0,

√
24].∗ Select two columns of Ã at

random and multiply by δ to produce the final input matrix A (rounded to single).

6. We compute b = Ax̃ using double-double precision (using the XBLAS routine BLAS_sgemm_x),
but rounded to single at the end.

7. Compute x = A−1b by using double precision GEPP with double-double precision iterative
refinement. This corresponds to Algorithm 3 with IEEE754 double precision as working
precision (εw = 2−53) and double-double as residual precision (εr ≈ 2−105). Note that the
“true” solution x thus obtained is usually not the same as x̃ that we started, due to rounding
errors committed in step 6. This difference can be quite large if A is ill-conditioned.

Using the above procedure, two million 100× 100, two million 10× 10, and 2× 105 1000× 1000
test matrices were generated. Statistics for the 100 × 100 matrices will be discussed in the next
section.

5.3 Test Matrix Statistics

In this section we present various statistics on the two million 100 × 100 test matrices generated.
Similar statistics were obtained for the two million 5×5, two million 10×10, and 2×105 1000×1000
test cases as well. The six plots in figure 2 are histograms of various condition numbers that can be
defined. The vertical blue line in each plot in figure 2 indicate where κ = 1/γεw. For these systems,
γ = max{10,

√
n} = 10. Near the top of the vertical blue line, the two percentages indicates the

fraction of total found on each side. All condition numbers that appear are ∞-norm condition
numbers†. All condition numbers were computed in double precision, using a modification of
dgecon condition number estimator. Hence even condition numbers approaching double precision
limit are known accurately (up to the limits of the rcond estimator [13]).

Figure 2(a) shows the histogram of κs = κ∞(RAC) = κ∞(As), the condition number of the
equilibrated system. This is a measure of the inherent difficulty of the system (measured in an

∗As in step 4, we chose this distribution as to not overload our test samples with “hard” problems (in normwise
sense) with large κ(RA) = κ(AsC

−1).
†LAPACK routines were modified to return κ∞ rather than κ1.

21

log10 κs

co
u
n
t

Histogram of κs

63.4% 36.6%

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

9

10
×104

(a) κs = κ(RAC)

log
10

κc

co
u
n
t

Histogram of scaling factor

92.2% 7.8%

0 2 4 6 8 10
0

1

2

3

4

5

6

7
×105

(b) κc = ‖C‖∞

log
10

κx

co
u
n
t

Histogram of κx

84.3% 15.7%

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

9
×104

(c) κx = maxi |xi|/mini |xi|

log10 κy

co
u
n
t

Histogram of κy

92.5% 7.5%

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5
×105

(d) κy = maxi |yi|/mini |xi|

log10 κnorm

co
u
n
t

Histogram of κnorm

41.1% 58.9%

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8
×104

(e) κnorm = κ(RA)

log10 κcomp

co
u
n
t

Histogram of κcomp

27.3% 72.7%

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12
×104

(f) κcomp = κ(RA diag(x))

Figure 2: Histograms of various properties of test matrices. The vertical blue line is located at 1/γεw, the
threshold between “well-conditioned” and “ill-conditioned”. The percentage of the test sample that belong
to each category is indicated at the top near the vertical blue line. Here γ = max{10,

√
n} = 10.

22

appropriate norm). This condition number varies from about from about 57 to 1.6× 1013, with all
but 2169 (0.11%) smaller than 1010.

Figure 2(b) shows the histogram of κc = κ∞(C) = ‖C‖∞, the maximum column scaling factor
computed during equilibration. This varies from 1 to 235 ≈ 3.4 × 1010. Since the equilibration is
only done if ‖C‖ would be greater than 10, C = I happens relatively often, appearing as a spike
at κ(C) = 1 in the figure.

Figure 2(c) shows the histogram of κx = κ∞(diag(x)) = maxi |xi|/mini |xi|, the ratio between the
largest and smallest element (in magnitude) of x. This is a measure of how wildly the components
of x varies. We see that κx varies from 1 to about 6.8× 1013, with all but 750 (0.04%) of them less
than 1010.

Figure 2(d) shows the histogram of κy = κ∞(diag(y)) = maxi |yi|/mini |yi|, the ratio between the
largest and smallest element (in magnitude) of y. This varies from 1 to approximately 8.5× 1012,
with all but 1266 (0.06%) less than 1010. This is a measure of how wildly the components of y
varies, which gives some idea of the difficulty of getting componentwise accurate solution. The
term κy appears naturally in the condition number for componentwise problem, since κcomp =
κ∞(As diag(y)) ≤ κsκy.

Figure 2(e) shows the histogram of κnorm, varying from about 57 to 7.6 × 1017. Recall that
this is the condition number for the normwise problem: κnorm = κ(RA) = κ(AsC

−1) ≤ κsκc. The
vertical blue line divides the test matrices into two categories, according to κnorm:

• Normwise well-conditioned problems. These are matrices with κnorm ≤ 1/γεw, and
perhaps more accurately described as “not too ill-conditioned” matrices. These are matrices
where we hope to have an accurate solution after refinement in the normwise sense. Most
problems can be expected to fall in this category in practice. Of the two million test matrices,
821097 cases fall into this category.

• Normwise ill-conditioned problems. These are the rest of the matrices with κnorm >
1/γεw. These are matrices that are extremely ill-conditioned, and therefore we cannot guaran-
tee accurate solutions. Of the two million test matrices, 1178903 cases fall into this category.

Note that the choice of 1/γεw (which is approximately 1.67 × 106 for 100 × 100 matrices) as the
separation between well and ill-conditioned matrices is somewhat arbitrary; we could have chosen
a more conservative criteria such as 1/nεw or more aggressive criteria such as 1/εw. Our data in
Section 6 indicate that the choice 1/γεw seems to give reliable solutions without throwing away too
many convergent cases. The lower bound provided by max{10,

√
n} both protects against condition

number underestimates and also keeps the bounds attainable for small systems.
Figure 2(f) shows the histogram of κcomp, varying from about 57 to 4.5×1015. Recall that this is

the condition number for componentwise problem: κcomp = κ(RA diag(x)) = κ(As diag(y)) ≤ κsκy.
Note that κcomp depends not only on the matrix A, but also on the right hand side vector b (since
it depends on the solution x). As in the case of condition number for the normwise problem, we
divide the problems into two categories according to κcomp:

• Componentwise well-conditioned problems. These are problems with κcomp ≤ 1/γεw,
and perhaps more accurately described as “not too ill-conditioned” problems. These are
problems where we hope to have an accurate solution in componentwise sense. Of the two
million test problems, 545427 cases fall into this category.

23

log10 κs

lo
g
1
0
κ

c

Distribution of test matrices (κsvs. κc) (2000000 cases)

4.7% 0.7%

2.4%

13.3%

45.3% 33.5%

0 2 4 6 8 10 12 14
100

101

102

103

104

0

2

4

6

8

10

12

14

(a) κs vs. κc

log10 κs

lo
g
1
0
κ

y

Distribution of test matrices (κsvs. κy) (2000000 cases)

4.6% 0.9%

2.0%

13.4%

45.4% 33.7%

0 2 4 6 8 10 12 14
100

101

102

103

104

0

2

4

6

8

10

12

14

(b) κs vs. κy

Figure 3: Distribution of test matrices (2D histograms).

• Componentwise ill-conditioned problems. These are the rest of the problems with
κcomp > 1/γεw. These are problems that are extremely ill-conditioned, and therefore we
cannot guarantee accurate solutions. Of the two million test problems, 1454573 cases fall into
this category.

Note that if any component of the solution is zero, then κcomp becomes infinite.
Figure 3(a) shows the distribution of the 2 million test matrices displayed as a 2D histogram,

with the horizontal axis indicating the equilibrated condition number κs and the vertical axis
indicating the condition number κc of the column scaling matrix C. Since these types of 2D
histograms appear throughout this paper, we explain this type of plot in some detail here. In
each 2D histogram, each colored square at coordinate (x, y) indicates the existence of matrices that
have κs in the range [10x, 10x + 1/4) and κc in the range [10y, 10y + 1/4). The color of each square
indicates the number of matrices that fall in that square, indicated by the color bar to the right of
the plot. Red (dark) colored squares indicate large population while cyan (light) colored squares
indicate very small population. Note that logarithmic scale is used in the color bar, so a lighter
color indicates a vastly smaller population than a darker color. For example, the light cyan colored
squares near the top and left edges contains only a handful of matrices (less than 5, usually just 1),
while the darker red colored squares contains approximately 103 to 104 samples. These graphs can
be interpreted as a test matrix population density at each coordinate, with a resolution of 1/4× 1/4

squares.
The blue horizontal and vertical lines are located at κs = 1/γεw and κc = 1/γεw, respectively,

separating “well-conditioned” and “ill-conditioned” matrices according to appropriate measure.
Along with the diagonal line κs = κc, this separates the plot into six regions, and the percentage
of samples in each region is displayed in bold numbers in the plot. So for example, 33.5% of test
samples had κs > 1/γεw and κc ≤ 1/γεw.

Similarly, figure 3(b) shows the distribution of the test matrices displayed as a 2D histogram,
with the horizontal axis indicating the equilibrated condition number κs and the vertical axis
indicating the condition number κy of the scaled solution y. Both figures 3(a) and 3(b) shows that

24

final pivot growth

lo
g
1
0
co

u
n
t

Pivot Growth Histogram

-20 0 20 40 60 80
0

1

2

3

4

5

6

Figure 4: Histogram of GEPP pivot growth.

we sampled the respective test matrix space thoroughly.
For the basic solution method, we used LAPACK’s sgetrf (GEPP, PAs = LU) and sgetrs (tri-

angular solve) routines. We observed that the pivot growth factors maxi,j |U(i, j)|/ maxi,j |As(i, j)|
are no more than 72. This implies that we have obtained LU factors with small normwise back-
ward error. Figure 4 shows the histogram of the pivot growth. This is consistent with the results
by Trefethen and Schreiber [32]. Their statistical analysis and empirical data suggested that for
various distribution of random matrices, the average growth factor (normalized by the standard
deviation of the initial elements) is about n2/3 ≈ 22 for partial pivoting.

5.4 Accuracy of Single Precision Condition Numbers

All the condition numbers in section 5.3 were computed in double precision, which can be regarded
as the truth. Since the actual code sgesvxx will only estimate the condition number in single
precision, it is important to make sure that single precision result is accurate for condition numbers
up to 1/γεw.

The 2D histograms of the normwise condition number κnorm computed in single precision and
double precision, is shown in figure 5(a). These 2D histograms were described in Section 5.3 (in the
paragraph describing figure 3(a) on page 24). The horizontal axis displays the condition number
computed in single, which is what our code sgesvxx computes to determine the trustworthiness of
our solution. The vertical axis displays the same condition number computed in double precision
(using extra-precision iterative refinement), which we regard as truth. We see that for those matrices
with κnorm ≤ 1/γεw, the single precision result matches the double precision result very closely,
resulting in the dark red diagonal band in the bottom-left quadrant of the figure. This tells us that
we can trust the single precision κnorm to separate the not too ill-conditioned matrices from very
ill-conditioned matrices.

Figure 5(b) tells the same story for the componentwise condition number κcomp; the single
precision κcomp is accurate unless the problem is extremely ill-conditioned. Note that κcomp depends
on the computed solution (since κcomp = κ(As diag(y))); the displayed plot is for our algorithm

25

log10 κnorm (single precision)

lo
g
1
0
κ

n
o
r
m

(d
o
u
b
le

p
re

ci
si

o
n
)

κnorm: single vs. double precision (2000000 cases)

0.0% 28.9%

30.1%

19.2%

21.8% 0.0%

0 2 4 6 8 10 12 14
100

101

102

103

104

0

2

4

6

8

10

12

14

(a) κnorm

log10 κcomp (single precision)

lo
g
1
0
κ

c
o
m

p
(d

o
u
b
le

p
re

ci
si

o
n
)

κcomp: single vs. double precision (2000000 cases)

0.0% 35.9%

36.8%

12.6%

14.6% 0.0%

0 2 4 6 8 10 12 14
100

101

102

103

104

105

0

2

4

6

8

10

12

14

(b) κcomp

Figure 5: Accuracy of computed condition numbers: single precision vs. double precision. The single
precision κcomp are those computed by Algorithm 3 with ρthresh = 0.5.

(Algorithm 3) with ρthresh = 0.5. However, results with other values for the parameter ρthresh did
not significantly alter the picture.

5.5 Testing Platforms

We have tested the code on two platforms: Sun UltraSPARCs running Solaris and Itanium 2 running
Linux. The numerical results presented in this report are obtained using the 1.3 GHz Itanium II
processors in the Berkeley CITRIS cluster. The iterative refinement code is written in Fortran and
is driven by test code in C. The result-generating codes are compiled with the GNU compilers g77
and gcc∗. ATLAS 3.6.0 [34] provides the BLAS routines and the LAPACK factorization routine.
The XBLAS reference implementation [17] plus the additional routines above provide our extended-
precision capabilities. On the Itanium 2 platforms, we have also tested with Intel’s Math Kernel
Library 7.2 [9] and their version 8.0 C and Fortran compilers. On the UltraSPARC platform, tests
were run with Sun’s compilers and Performance Library 6.0 [21]. The statistics on each platform
and BLAS library were approximately the same. The only differences occurred with ill-conditioned
problems.

6 Numerical Results

In this section, we present the numerical results for our new algorithm, Algorithm 3. The statistics
are based on two million 100×100 test matrices described in Section 5. Similar results were obtained
on two million each of 5 × 5 and 10 × 10 matrices and also two hundred thousand 1000 × 1000
matrices†. In particular, we will use these examples to evaluate and justify the new algorithmic

∗Both g77 and gcc are from GNU compiler collection version 3.3.4, Debian 1:3.3.4-13
†Full set of plots summarizing the result of Algorithm 3 (with various ρthresh values), Algorithm 4, and Algorithm 5

on all 6.2 million matrices are available at http://www.cs.berkeley.edu/∼demmel/itref-data/.

26

http://www.cs.berkeley.edu/~demmel/itref-data/

features by comparing to Wilkinson’s scheme (Algorithm 4) and to the current LAPACK algorithm
with our small modifications (Algorithm 5).

The normwise and componentwise true errors are denoted Enorm and Ecomp, respectively. They
are defined by

Enorm =
‖x− x̂‖∞
‖x‖∞

and Ecomp = max
i

|xi − x̂i|
|xi|

,

where x is the true solution and x̂ is the solution computed by the algorithm. Similarly, the
normwise and componentwise error bounds (computed by the algorithms) are denoted Bnorm and
Bcomp, respectively.

The presentation of normwise and componentwise results will be treated separately in Sec-
tions 6.1 and 6.2. In these two sections, we set the parameter ρthresh = 0.5 in Algorithms 3 and 4,
because this value was historically used in Algorithm 4. The parameter ithresh (maximum number
of iterations allowed) is set very large so that the algorithm will not stop prematurely.

We now define some notation common to Sections 6.1 and 6.2. Both 2D histograms and tables
will distinguish three cases, depending on the size of the true error or the error bound. For example,
for Enorm we distinguish

1. Strong Convergence: Enorm ≤ 2γεw = 2 max{10,
√

n} · εw. This is the most desirable
case, where the true error is of order εw. For example, the lower solid horizontal blue line in
Figure 6(a) (and in other analogous figures) is at Enorm = 2γεw.

2. Weak Convergence: 2γεw < Enorm ≤
√

εw. We could not get strong convergence, but we
did get at least half of the digits correctly. For example, the upper solid horizontal blue line
in Figure 6(a) (and in other analogous figures) is at Enorm =

√
εw.

3. No Convergence: Enorm >
√

εw. We could not get a meaningful result.

In addition, we often indicate the value of εw in figures as well. For example the dashed horizontal
blue line in Figure 6(a) (and in other analogous figures) is at Enorm = εw.

Many other analogous figures have two solid horizontal and one dashed horizontal line to indicate
similar thresholds for Bnorm, Ecomp, and Bcomp.

In the final version of the code we set the error bound to 1 whenever its computed value
exceeds

√
εw, in order to indicate that it did not converge according to our criterion above. But

in this section we report the computed error bounds without setting them to 1, in order to better
understand their behavior.

Later in Section 6.4 we will vary the parameters ρthresh and ithresh to study how the behavior
of Algorithm 3 changes. In particular, we will recommend “cautious” and “aggressive” values of
ithresh and ρthresh. The cautious settings, which we recommend as the default, yield maximally
reliable error bounds for well-conditioned (or not too ill-conditioned) problems, and cause the code
to report convergence failure on the hardest problems. The aggressive settings will lead to more
iterations on the hardest problems and usually, but not always, give error bounds within a factor
of 100 of the true error.

6.1 Normwise Error Estimate

In this section we look at the results in terms of normwise error and bound. We compare three algo-
rithms: our new algorithm (Algorithm 3) with ρthresh = 0.5, Wilkinson’s algorithm with our error

27

bound formula (Algorithm 4), and the current LAPACK algorithm with our small modifications
(Algorithm 5).

The most important observation is that both Algorithm 3 or Algorithm 4 deliver a tiny error
(Enorm strongly converged) and a slightly larger error bound (Bnorm also strongly converged) as
long as κnorm < 1/γεw, i.e. for all not-too-ill-conditioned matrices in our test set (821097 out of 2
million). This is the best possible behaviour we could expect, and helps justify our recommendation
for “cautious” use of Algorithm 3 in Section 6.4.

The second important observation is that for the harder problems, those with κnorm ≥ 1/γεw,
both algorithms also do very well, with Algorithm 3 getting strong convergence in both Enorm and
Bnorm in 96.4% of the cases, and Algorithm 4 getting strong convergence in both Enorm and Bnorm

in 92.3% of the cases.
In the rest of this section, we explore the experimental data in more detail, describing what

goes wrong when we fail to get strong convergence.
The three plots in Figure 6 show the 2D histograms of the test problems plotted according

to their true normwise error Enorm and condition number κnorm for the three algorithms. These
2D histograms were described in Section 5.3 on page 24; these plots can be interpreted as the
population density of the test matrices. The vertical solid line is at κnorm = 1/γεw, and separates
the not too ill-conditioned problems from the extremely ill-conditioned problems. Note that if any
problem falls outside of the coordinate range, then it is placed at the edge; for example the band
at the very top of Figure 6(a) are all the cases where Enorm ≥ 10.

The first important conclusion to draw from Figure 6 is that for not-too-ill-conditioned problems
(κnorm < 1/γεw), both Algorithm 3 and Algorithm 4 (Figures 6(a) and 6(b)) attain the best possible
result: strong convergence of Enorm in all cases (821097 out of 2 million).

The second important conclusion is that for harder problems, with κnorm ≥ 1/γεw (1178903
cases) both Algorithm 3 and Algorithm 4 still do very well, with Algorithm 3 exhibiting strong
convergence of Enorm in 96.4% of cases (1136987 out of 1178903), and Algorithm 4 exhibiting strong
convergence of Enorm in 93.3% of cases (1100328 out of 1178903).

In contrast, with Algorithm 5 (Figure 6(c)), the error grows roughly proportional to the con-
dition number, as shown by the dark diagonal squares in the figure. This is consistent with the
early error analysis on the working precision iterative refinement [13, Theorem 12.2]. Algorithm 5
consistently gives much larger true errors and error bounds than either of the other two algorithms,
when it converges.

But of course a small error Enorm is not helpful if the algorithm cannot recognize it by computing
a small error bound Bnorm. We now compare Bnorm to Enorm to see how well our error estimate
approximates the true error. Figure 7 shows the value of (Enorm, Bnorm) for each problem, as a
2D histogram. The plots on the left includes all two million test cases, while the plots on the
right only include the not-too-ill-conditioned problems, those with κnorm ≤ 1/γεw. The vertical
solid blue lines are at Enorm = 2γεw (corresponding to the threshold for strong convergence) and
Enorm =

√
εw (corresponding to the threshold for weak convergence). Horizontal blue lines are at

Bnorm equal to the same values. The diagonal line marks where Bnorm is equal to Enorm; matrices
below the diagonal correspond to underestimates (Bnorm < Enorm), and matrices above the diagonal
correspond to overestimates (Bnorm > Enorm), The vertical and horizontal dotted lines correspond
to Enorm = εw and Bnorm = εw, respectively.

First consider the right-hand plots in Figure 7(a) and Figure 7(b). These show the happy result
that for not-too-ill-condition problems, both Algorithm 3 and Algorithm 4 perform perfectly: strong

28

log10 κnorm

lo
g
1
0
E

n
o
r
m

Normwise error vs. condition number κnorm. (2000000 cases)

40377

1539

821097 1136987

0 5 10 15
100

101

102

103

104

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(a) Algorithm 3 with ρthresh = 0.5

log10 κnorm

lo
g
1
0
E

n
o
r
m

Normwise error vs. condition number κnorm. (2000000 cases)

42595

35980

821097 1100328

0 5 10 15
100

101

102

103

104

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(b) Algorithm 4 (Wilkinson)

log
10

κnorm

lo
g
1
0
E

n
o
r
m

Normwise error vs. condition number κnorm. (2000000 cases)

167212 1156099

463800 22544

190085 260

0 5 10 15
100

101

102

103

104

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(c) Algorithm 5 (LAPACK)

Figure 6: Normwise error vs. κnorm.

29

log
10

Enorm

lo
g
1
0
B

n
o
r
m

Normwise Error vs. Bound (2000000 cases)

100

40359

343

1361 18

1957741 78

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

log
10

Enorm

lo
g
1
0
B

n
o
r
m

Normwise Error vs. Bound
(Cases with κnorm ≤ 1/γεw) (821097 cases)

821097

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(a) Algorithm 3 with ρthresh = 0.5

PSfrag replacemen

log10 Enorm

lo
g
1
0
B

n
o
r
m

Normwise Error vs. Bound (2000000 cases)

1 26

42394

12647

25425 201

1908777 10529

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

log
10

Enorm

lo
g
1
0
B

n
o
r
m

Normwise Error vs. Bound
(Cases with κnorm ≤ 1/γεw) (821097 cases)

821097

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(b) Algorithm 4 (Wilkinson)

log10 Enorm

lo
g
1
0
B

n
o
r
m

Normwise Error vs. Bound (2000000 cases)

133497 485930

1323311

56848

414

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

log
10

Enorm

lo
g
1
0
B

n
o
r
m

Normwise Error vs. Bound
(Cases with κnorm ≤ 1/γεw) (821097 cases)

133290 463386

167212

56795

414

-8 -6 -4 -2 0
100

101

102

103

104

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(c) Algorithm 5 (LAPACK)

Figure 7: Normwise error vs. bound. The left plots include all two million cases, while the right plots
include only the well-conditioned (κnorm < 1/γεw) cases.

30

Enorm in Alg. 3
strong weak fail

3 41 2 38705
fail 1 31 4 21 320 50

19 1 1215 46
6 25 1 9 258 1

Bnorm weak 7 227 8 15 534 28 16in Alg. 3
63 7 485 31 1

6 3363 1
strong 12597 24255 94 6 58 1

1906992 10434 2 10

Table 1: Classification of matrices using normwise measure. The matrices are first classified according to
Algorithm 3 results, resulting in the 3× 3 blocks delineated by solid lines. Then in each of the 9 boxes, the
result is further classified according to the result of Algorithm 4, with columns and rows ordered in the same
fashion. Note that each blocks are arranged so that it matches the location found in Figure 7.

convergence in both Enorm and Bnorm in all cases. Furthermore, Bnorm always slightly overestimates
Enorm. Thus we can trust either algorithm to deliver a tiny error and a slightly larger error bound
as long as κnorm < 1/γεw.

Now consider the left-hand plots in the same figures. By subtracting out the 821097 not-too-
ill-conditioned cases, we get the distribution of results (Enorm, Bnorm) for all ill-conditioned cases.
Most still yield strong convergence in both quantities, but it is interesting to contrast the behavior
of Algorithms 3 and 4.

The first impression from these plots is that among these ill-conditioned cases, both Algorithms 3
and 4 fail to have Bnorm converge in about same number of cases: 3.4% and 3.6% repectively. But
of the remainder, those where both algorithms report an error bound to the user, Algorithm 3
fails to get strong convergence in both Enorm and Bnorm in only 0.16% of the cases (1800 out of
1138444 cases), whereas Algorithm 4 fails to get strong convergence in both Enorm and Bnorm over
27 times as often, in 4.3% of the cases (48802 out of 1136482). In other words, there are over 27
times more cases where Algorithm 4 is “confused” than Algorithm 3 (48802 versus 1800), and may
return significantly disagreeing Enorm and Bnorm (see also Figures 8(a) and 8(b)).

To further understand the difference between Algorithms 3 and 4, we further classify all 2 million
cases according to whether the entries of the 4-tuple (Enorm(Alg 3), Bnorm(Alg 3), Enorm(Alg 4),
Bnorm(Alg 4)) are strongly converged, weakly converged or not converged, i.e. 34 = 81 categories
in all. This results in the 9 × 9 table shown in Table 1. For example, the entry at bottom-
left indicates that 1906992 cases achieved strong convergence in both Enorm and Bnorm for both
Algorithms 3 and 4, and the top-right entry indicates that in 38705 cases both algorithms failed to
converge in either Enorm or Bnorm.

Eliminating these 1906992+38705 = 1945697 cases leaves 54303 cases (all ill-conditioned) where
Algorithms 3 and 4 behaved significantly differently. Of these 54303 cases, Algorithm 3 significantly
outperformed Algorithm 4, getting strong convergence in Enorm and Bnorm 93% of the time, versus
3% for Algorithm 4.

Finally, Figure 8 shows the 2D histogram of the ratio Bnorm/Enorm plotted against κnorm. These

31

log
10

κnorm

lo
g
1
0
(r

a
ti
o)

Normwise bound/error ratio vs. κnorm

(strong-strong and unconverged cases omitted) (1800 cases)

1

24

1563

205

7

0 5 10 15

100

101

-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) Algorithm 3 with ρthresh = 0.5

log
10

κnorm

lo
g
1
0
(r

a
ti
o)

Normwise bound/error ratio vs. κnorm

(strong-strong and unconverged cases omitted) (48802 cases)

35

2095

22310

24119

237

6

0 5 10 15
100

101

102

-5

-4

-3

-2

-1

0

1

2

3

4

5

(b) Algorithm 4 (Wilkinson)

log
10

κnorm

lo
g
1
0
(r

a
ti
o)

Normwise bound/error ratio vs. κnorm

(strong-strong and unconverged cases omitted) (57262 cases)

56441 53

768

0 5 10 15
100

101

102

103

-5

-4

-3

-2

-1

0

1

2

3

4

5

(c) Algorithm 5 (LAPACK)

Figure 8: Overestimation and underestimation ratio (Bnorm/Enorm) vs. κnorm. Cases with strong convergence
(in both Enorm and Bnorm) and cases with no convergence (Bnorm >

√
εw) are omitted for clarity.

32

plots show how much Bnorm overestimates Enorm (ratio > 1) or underestimates Enorm (ratio < 1).
We omit cases where Bnorm does not converge, and also cases where both Enorm and Bnorm converged
strongly (the ideal case), since we are only interested in analyzing in cases where the algorithm
claims to converge to a solution but either Enorm or Bnorm or both are much larger than εw. Since
Algorithms 3 and 4 converge strongly for both Enorm and Bnorm for all not-too-ill-conditioned cases,
no data points appear left of the vertical line in Figures 8(a) and 8(b). We are most concerned about
underestimates, where the error bound is substantially smaller than the true error. We see that
Algorithm 3 has somewhat fewer underestimates than Algorithm 4 (defined as Enorm > 10Bnorm):
7 vs. 243 and rather fewer overestimates (10Enorm < Bnorm), 25 vs. 2130.

Figure 8(c) indicates that while Algorithm 5 never underestimates the error, it almost always
overestimates the error by two or three orders of magnitude. Combined with Figure 7(c) indicating
that no example converged strongly, the error bound returned by Algorithm 5 is not too practical,
albeit being safe.

6.2 Componentwise Error Estimate

In this section we look at the results in terms of componentwise true error Ecomp and error bound
Bcomp. We compare three algorithms: our new algorithm (Algorithm 3) with ρthresh = 0.5, Wilkin-
son’s algorithm (Algorithm 4), and the current LAPACK algorithm with our modifications to
compute a componentwise error bound (Algorithm 5). Algorithm 4 does not compute a comp-
onentwise error bound, nor was it designed to make Ecomp small, so only its true error Ecomp is
compared in this section.

The most important observation is that Algorithm 3 delivers a tiny componentwise error (Ecomp

strongly converged) and a slightly larger error bound (Bcomp also strongly converged) as long as
κcomp < 1/γεw, i.e. for all not-too-ill-conditioned matrices in our test set (that is, not too ill-
conditioned with respect to the componentwise condition number κcomp), 545427 out of 2 million
cases. This is the best possible behavior we could expect, and helps justify our recommendation
for “cautious” use of Algorithm 3 in Section 6.4.

The second important observation is that for the harder problems, those with κcomp ≥ 1/γεw,
Algorithm 3 also does very well, getting strong convergence in both Ecomp and Bcomp in 94% of the
cases.

In the rest of this section, we explore the experimental data in more detail, describing what
goes wrong when we fail to get strong convergence.

The three plots in Figure 9 show the 2D histograms of the test problems plotted according
to their componentwise error Ecomp and condition number κcomp for the three algorithms. These
graphs may be interpreted similarly to those in Figure 6, which were described in the last section.

The first important conclusion to draw from Figure 9 is that for not-too-ill-conditioned problems
(κcomp < 1/γεw), Algorithm 3 attains the best possible result: strong convergence of Ecomp in all
cases (all 545427 out of 2 million). Algorithm 4, which was not designed to get small componentwise
errors, does slightly worse, with strong convergence in 99% of the cases (539342 out of 545427),
and weak or no convergence in the other 1%, including a few really well-conditioned problems.

The second important conclusion is that for harder problems, with κcomp ≥ 1/γεw (1454573
cases) Algorithm 3 still does very well, exhibiting strong convergence of Ecomp in 95% of cases
(1380569 out of 1454573). Algorithm 4 does worse, exhibiting strong convergence of Ecomp in only
66.6% of cases (968198 out of 1454573), and failing to converge at all more than twice as frequently

33

log10 κcomp

lo
g
1
0
E

c
o
m

p

Componentwise error vs. condition number κcomp. (2000000 cases)

41755

32249

545427 1380569

0 5 10 15
100

101

102

103

104

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(a) Algorithm 3 with ρthresh = 0.5

log10 κcomp

lo
g
1
0
E

c
o
m

p

Componentwise error vs. condition number κcomp. (2000000 cases)

1414 104108

4671 382267

539342 968198

0 5 10 15
100

101

102

103

104

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(b) Algorithm 4 (Wilkinson)

log10 κcomp

lo
g
1
0
E

c
o
m

p

Componentwise error vs. condition number κcomp. (2000000 cases)

205937 1451926

299660 2646

39830 1

0 5 10 15
100

101

102

103

104

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(c) Algorithm 5 (LAPACK)

Figure 9: Componentwise error vs. κcomp.

34

(104108 versus 41755).
In contrast, with Algorithm 5 the error grows roughly proportional to the condition number, as

shown by the dark diagonal squares in the figure. Strong convergence of Ecomp is very rare, only
7.3% of not-too-ill-conditioned cases, and not at all for ill-conditioned cases.

As in the last section, we note that a small error Ecomp is helpful only if the algorithm also
produces a comparably small error bound Bcomp. Consider Figure 10, whose interpretation is the
same as that of Figure 7 in the last section.

First consider the right-hand plot in Figure 10(a). This shows the happy result that for not-
too-ill-conditioned problems, Algorithm 3 performs perfectly: strong convergence in both Ecomp

and Bcomp in all cases. Furthermore, Bcomp always slightly overestimates Ecomp. Thus we can trust
Algorithm 3 to deliver a tiny error and a slightly larger error bound as long as κcomp < 1/γεw.

Now consider the left-hand plot in the same figure. By subtracting out the 545427 not-too-ill-
conditioned cases, we get the distribution of results (Ecomp, Bcomp) for all ill-conditioned cases. Most
still yield strong convergence in both quantities (94%). In contrast, Algorithm 5 never converges
strongly.

Finally, Figure 11 shows the 2D histogram of the ratio Bcomp/Ecomp plotted against κcomp. This
graph is very similar to those in Figure 8, which were described in the last section. In contrast to
that figure, we see there are more cases where Algorithm 3 attains neither strong convergence in
both true error and error bound, nor convergence failure in both: 45100 cases versus 1800 (both
out of 2 million, so rather few either way). Considering underestimates of the error, we see that
there are also more cases where the ratio is less than 0.1, 273 vs. 7.

6.3 Iteration Counts and Running Time

Figure 12 shows the relation between number of iterations and the componentwise condition number
κcomp. We see that for well conditioned problems, all three algorithms require less than 5 iterations.
The statistical summary of the iteration count (broken down into single x and doubled-x iterations)
is shown in Table 2. Note that Figure 12(a) is for ρthresh = 0.5. Other values of ρthresh in Table 2
is discussed further in Section 6.4.2.

We now look at the number of cases where doubled-x scheme was used (in Algorithm 3 with
ρthresh = 0.5). Of the 545427 cases with well-conditioned componentwise condition number, in
299984 (55%) cases the doubled-x scheme was triggered. A maximum of 3 iterations in doubled-x
was performed (in 649 cases), with an average of 0.66 iterations, compared to an average of 1.5
single-x iterations. Thus we see that for well-conditioned systems we do not spend too much time
in the more expensive doubled-x scheme. Note that the average and maximum number of iterations
in Algorithm 3 is identical to that of Wilkinson’s Algorithm 4, and is less than that of LAPACK’s
Algorithm 5. Of the 1454573 cases with ill-conditioned componentwise condition number, almost all
(99.994%) required the doubled-x scheme, and all but the very first iteration was done in doubled-x.

The doubled-x iteration performs a gemv2 operation described in Section 5.1, which requires
about twice the number of floating-point operations as in the normal gemv used in single-x iterations.
However, since they require approximately same number of memory references, we expect with some
optimizations the actual running time of gemv2 will be much less than twice that of gemv.

35

PSfrag replacemen

log10 Ecomp

lo
g
1
0
B

c
o
m

p

Componentwise Error vs. Bound (2000000 cases)

1 236

41702

13034

25307 53

1912961 6706

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

log10 Ecomp

lo
g
1
0
B

c
o
m

p

Componentwise Error vs. Bound
(Cases with κcomp ≤ 1/γεw) (545427 cases)

545427

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(a) Algorithm 3 with ρthresh = 0.5

log10 Ecomp

lo
g
1
0
B

c
o
m

p

Componentwise Error vs. Bound (2000000 cases)

39831 302306

1657863

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

log10 Ecomp

lo
g
1
0
B

c
o
m

p

Componentwise Error vs. Bound
(Cases with κcomp ≤ 1/γεw) (545427 cases)

39830 299660

205937

-8 -6 -4 -2 0
100

101

102

103

104

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(b) Algorithm 5 (LAPACK)

Figure 10: Componentwise error vs. bound. The left plot includes all two million cases, while the right
plot includes only the well-conditioned (κcomp < 1/γεw) cases.

36

log10 κcomp

lo
g
1
0
(r

a
ti
o)

Componentwise bound/error ratio vs. κcomp

(strong-strong and unconverged cases omitted) (45100 cases)

13

1614

28268

14932

271

2

0 5 10 15
100

101

102

103

-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 11: Overestimation and underestimation ratio (Bcomp/Ecomp) vs. κcomp, Algorithm 3 with ρthresh =
0.5. Cases with strong convergence (in both Ecomp and Bcomp) and cases with no convergence (Bcomp >

√
εw)

are omitted for clarity.

(a) Well-conditioned (κcomp ≤ 1/γεw)

single x doubled x total doubled-x
max mean med max mean med max mean med incidence

Alg. 3 (ρthresh = 0.5) 3 1.5 1 3 0.7 1 4 2.1 2 55%
Alg. 3 (ρthresh = 0.8) 3 1.5 1 3 0.7 1 4 2.1 2 55%
Alg. 3 (ρthresh = 0.9) 3 1.5 1 3 0.7 1 4 2.1 2 55%
Alg. 3 (ρthresh = 0.95) 3 1.5 1 3 0.7 1 4 2.1 2 55%
Alg. 4 (Wilkinson) 4 2.1 2
Alg. 5 (LAPACK) 4 2.6 3

(b) Ill-conditioned (κcomp > 1/γεw)

single x doubled x total doubled-x
max mean med max mean med max mean med incidence

Alg. 3 (ρthresh = 0.5) 1 1 1 32 3.6 3 33 4.6 4 100%
Alg. 3 (ρthresh = 0.8) 1 1 1 89 4.0 3 90 5.0 4 100%
Alg. 3 (ρthresh = 0.9) 1 1 1 175 4.1 3 176 5.1 4 100%
Alg. 3 (ρthresh = 0.95) 1 1 1 330 4.3 3 331 5.3 4 100%
Alg. 4 (Wilkinson) 29 4.0 3
Alg. 5 (LAPACK) 6 2.4 2

Table 2: Statistics (max, mean, and median) on the number of iterations required by each algorithm.
“single x” refers to the iterations where x is kept in working precision (single), while “doubled x” refers to
the iterations where x is kept in doubled working precision (doubled-single). Algorithms 4 and 5 does not
have doubled-x scheme and hence some columns are left blank.

37

log10 κcomp

co
u
n
t

Total iteration count vs. κcomp. (2000000 cases)

2177

60280

254305

545427 1137811

0 5 10 15
100

101

102

103

104

0

5

10

15

20

25

30

35

40

45

50

(a) Algorithm 3 with ρthresh = 0.5

log10 κcomp

co
u
n
t

Total iteration count vs. κcomp. (2000000 cases)

32

43254

215747

545427 1195540

0 5 10 15
100

101

102

103

104

0

5

10

15

20

25

30

35

40

45

50

(b) Algorithm 4 (Wilkinson)

log10 κcomp

co
u
n
t

Total iteration count vs. κcomp. (2000000 cases)

4

545427 1454569

0 5 10 15
100

101

102

103

104

0

5

10

15

20

25

30

35

40

45

50

(c) Algorithm 5 (LAPACK)

Figure 12: Total iteration count vs. κcomp.

38

6.4 Effects of various parameters in Algorithm 3

Compared to Algorithm 4, Algorithm 3 incorporates several new algorithmic ingredients and ad-
justable parameters. We note that different parameter settings in Algorithm 3 usually do not make
any difference for the well-conditioned problems, since all of them quickly converge strongly. How-
ever they can make noticeable differences for the very ill-conditioned problems. In this section, we
examine the effect of each individual parameter setting, using these difficult problems.

6.4.1 Effect of doubled-x iteration

For ill-scaled systems, the doubled-x iteration is very useful in order to get accurate results for the
small components in the solution. We did the following experiment to support this statement. We
ran Algorithm 3 with and without the doubled-x iteration for the two million test cases.

Figure 13 shows the convergence statistics for the two methods. With doubled-x iteration, Al-
gorithm 3 obtains 57863 (2.9%) more cases of strong-strong normwise convergence as well as 256030
(12.8%) more cases of strong-strong componentwise convergence. The number of cases where the
code reports normwise non-convergence (Bnorm >

√
εw) decreases by 179; cases of componentwise

non-convergence (Bcomp >
√

εw) decreases by 5581.

6.4.2 Effect of ρthresh

In Algorithm 3, ρthresh is one of the most important parameters that may affect the iteration
behavior. It is used in Criterion (17) (see page 11) to determine when to stop the iteration:

stop if
‖dx(i+1)‖∞
‖dx(i)‖∞

≥ ρthresh. (23)

A larger ρthresh allows the algorithm to make progress more slowly and take more steps to con-
verge. This is useful for some very ill-conditioned problems for which the iteration may terminate
prematurely with a smaller ρthresh. However, a larger ρthresh may cause more severe overestimates
(because of the (1−ρthresh) factor in the denominator of the error bound) and underestimates (since
we are being more aggressive to pursue a small dx).

Figure 14 shows the convergence performance (measured by normwise bound) of various algo-
rithms. We see that Algorithm 3 achieves strong convergence more often than Algorithm 4. Larger
ρthresh in Algorithm 3 also makes some difference for ill-conditioned systems.

Table 3 gives the number of overestimates and underestimates of the error bounds returned
by Algorithm 3, as a function of ρthresh. We see that the number of unconverged cases drops
nearly in half as we increase ρthresh from 0.5 to 0.95 at the cost of more severe overestimates and
underestimates.

Table 2 displays the statistics of the total iteration counts for various algorithms. For well-
conditioned problems, Algorithm 3 (with various ρthresh) and Algorithm 4 all require about the
same number of steps (maximum of 4 with median of 2). For ill-conditioned problems, Algorithm 4
requires slightly fewer iterations than Algorithm 3 (at the cost of not converging in some cases).
Within Algorithm 3 it is clear that a larger ρthresh may potentially need a much larger number of
iterations. However, a large number of iterations is required only when the problem is extremely
hard and happens relatively rarely (hence the median stays at 4).

39

log10 Enorm

lo
g
1
0
B

n
o
r
m

Normwise Error vs. Bound
(Cases with κnorm > 1/γεw) (1178903 cases)

1 209

40428

25147

28519 26

1078781 5792

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(a) Without doubled-x scheme (normwise)

PSfrag replacemen

log10 Enorm

lo
g
1
0
B

n
o
r
m

Normwise Error vs. Bound
(Cases with κnorm > 1/γεw) (1178903 cases)

100

40359

343

1361 18

1136644 78

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(b) With doubled-x scheme (normwise)

log10 Ecomp

lo
g
1
0
B

c
o
m

p

Componentwise Error vs. Bound
(Cases with κcomp > 1/γεw) (1454573 cases)

9 2881

44630

87140

186653 453

1111504 21278 25

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(c) Without doubled-x scheme (componentwise)

log10 Ecomp

lo
g
1
0
B

c
o
m

p

Componentwise Error vs. Bound
(Cases with κcomp > 1/γεw) (1454573 cases)

1 236

41702

13034

25307 53

1367534 6706

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(d) With doubled-x scheme (componentwise)

Figure 13: Effect of doubled-x iteration. Only ill-conditioned problems (κnorm > 1/γεw for normwise case
and κcomp > 1/γεw for componentwise case) are displayed.

40

κnorm

F
ra

ct
io

n
w

it
h

B
n
o
r
m
≤

2
γ
ε

w

Fraction converged vs. κnorm

Alg. 5 (LAPACK)

Alg. 3 (ρthresh = 0.5)
Alg. 3 (ρthresh = 0.9)
Alg. 4 (Wilkinson)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Strong convergence (Bnorm ≤ 2γεw)

κnorm

F
ra

ct
io

n
w

it
h

B
n
o
r
m
≤

√
ε

w

Fraction converged vs. κnorm

Alg. 5 (LAPACK)

Alg. 3 (ρthresh = 0.5)
Alg. 3 (ρthresh = 0.9)
Alg. 4 (Wilkinson)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Weak convergence (Bnorm ≤ √
εw)

Figure 14: Fraction converged (based on normwise bound Bnorm) plotted against normwise condition
number κnorm.

(a) Normwise

Underestimates Overestimates No convergence
> 100× > 10× > 100× > 10×

Alg. 3 with ρthresh = 0.5 0 7 1 25 40459
Alg. 3 with ρthresh = 0.8 0 30 3 151 25452
Alg. 3 with ρthresh = 0.9 0 34 3 505 22755
Alg. 3 with ρthresh = 0.95 0 33 14 843 21673
Alg. 4 (Wilkinson) 6 243 35 2130 42421
Alg. 5 (LAPACK) 0 0 56494 57262 1942738

(b) Componentwise

Underestimates Overestimates No convergence
> 100× > 10× > 100× > 10×

Alg. 3 with ρthresh = 0.5 2 273 13 1627 41939
Alg. 3 with ρthresh = 0.8 5 463 36 3842 26847
Alg. 3 with ρthresh = 0.9 6 502 67 7436 24250
Alg. 3 with ρthresh = 0.95 8 499 140 11094 23297

Table 3: Number of overestimates and underestimates of the error returned by various algorithms. Cases
with strong convergence in both true error and error bound are not included in the underestimates and
overestimates. The number of cases with no convergence is also listed. The category “> 10×” includes the
cases under “> 100×”.

41

log
10

Enorm

lo
g
1
0
‖
d
x
‖ /

‖
x
‖

Normwise Error vs. Bound (2000000 cases)

19

22623

198

808 10

1975918 424

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(a) ‖dx‖∞/‖x‖∞

log10 Enorm

lo
g
1
0
‖
d
x
‖ /

‖
x
‖
(1

−
ρ
m

a
x
)

Normwise Error vs. Bound (2000000 cases)

127

22628

1073

852 5

1975043 272

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(b) Multiply 15(a) by 1/(1−ρmax)

log10 Enorm

lo
g
1
0
m

a
x
{
‖
d
x
‖ /

‖
x
‖
(1

−
ρ
m

a
x
),

γ
ε w

}

Normwise Error vs. Bound (2000000 cases)

127

22628

1073

852 5

1975043 272

-8 -6 -4 -2 0
100

101

102

103

104

105

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

(c) Max 15(b) with γεw

Figure 15: Effects of incorporating various components in Bnorm for Algorithm 3 with ρthresh = 0.9.

6.4.3 Justification of various components in the error bound

Figure 15 shows the true error Enorm versus the error bound Bnorm when using the following
formulas for computing Bnorm:

a. Bnorm = ‖dx‖∞
‖x‖∞ ,

b. Bnorm = ‖dx‖∞
‖x‖∞(1−ρmax) ,

c. Bnorm = max
{

‖dx‖∞
‖x‖∞(1−ρmax) , γεw

}
.

The purpose of carefully choosing the definition of Bnorm is to make it as reliable an upper
bound on Enorm as possible. The 2D histograms in Figure 15 justify our choice of formula for
Bnorm. As we add more components to the error bound (from (a) to (b) to (c)), the number

42

ρthresh ithresh

cautious 0.5 10
aggressive 0.9 100

Table 4: Recommended parameter settings for Algorithm 3.

of severe underestimates (> 100×) decreases from 38 to 6 to 0. However, the number of severe
overestimates (> 100×) increases from 0 to 3 to 3. We feel that reducing the number of severe
underestimates is desirable even if it increases the number of overestimates by a modest amount.

6.5 “Cautious” versus “aggressive” parameter settings

To summarize, by setting ρthresh and ithresh smaller or larger, Algorithm 3 can be made “cautious”
or “aggressive”. The cautious parameter setting should be used for well-conditioned or not too
ill-conditioned problems and we recommend this as the default setting in the algorithm. In this
case, the algorithm always terminates quickly, and according to our statistical testing with 2× 106

matrices, provides a reliable error bound. By examining the output reciprocal condition estimate
(rcond nrm or rcond cmp) to see if it exceeds 1/γεw, the user can have high confidence in the com-
puted error bounds. The cautious setting also works for a large fraction of the most ill-conditioned
problems, achieving strong normwise convergence in 96.4% of cases and strong componentwise
convergence in 94.0% of cases. Failure to converge is indicated by returning Bnorm = 1 and/or
Bcomp = 1, meaning no accuracy is guaranteed. We expect that most users would prefer this
cautious mode as the default.

On the other hand, the aggressive parameter setting could be used for very ill-conditioned
problems. In this mode, the algorithm is allowed to iterate much longer, and so more often arrives
at a fairly accurate solution. But there may be a number of cases that the returned error bound is
not very reliable (either too large or too small.) The aggressive mode can work for a larger fraction
of the extremely ill-conditioned problems.

Table 4 lists our recommended settings in the above two situations, based on our experimental
data in Section 6.4. The cautious setting ρthresh = 0.5 was also used in the earlier literature.

7 Limitations of Refinement and our Bounds

The analysis in Section 2 and the algorithm in Section 3 rely on a few crucial assumptions. We
assume that the system Ax = b is not so ill-conditioned that iterative refinement fails to converge
altogether. And we assume that the rounding errors in the residual (δr) and update (δx) com-
putations are negligible until termination. For Section 2.3’s componentwise estimates, we assume
no entry of any computed solution or the true solution is exactly zero. These assumptions lead to
limitations on Algorithm 3.

A strongly ill-conditioned system may produce a computed x̂ that is far from the true x.
Algorithm 3’s error estimates may be quite incorrect when the error is large, as well. Correct but
somewhat cautious guidelines for interpreting Algorithm 3’s bounds are that

• the normwise error bound Bnorm is unreliable when κnorm = κ∞(RA) ≥ 1/γεw,

43

• the componentwise error bound Bcomp is unreliable when κcomp = κ∞(RA diag(x)) ≥ 1/γεw,
and

• any error bound Bnorm or Bcomp is unreliable when it is at least
√

εw.

Condition numbers relative to application-specific, structured perturbations [7, 8, 24, 25, 33] should
capture many of the successful cases our cautious settings forgo.

The rounding errors δr and δx affect the algorithm adversely only for ill-conditioned systems.
The former is known, but the effect of δx on the componentwise convergence previously has not
been discussed. Extra precision reduces both these effects, and monitoring particular condition
numbers allows us to employ that extra precision selectively. Additionally, zero components in the
solution may prevent componentwise convergence. Section 7.3 describes how Algorithm 3 correctly
handles zero and tiny components.

7.1 Conditioning

Classical iterative refinement results guarantee convergence only when κ∞(A) is sufficiently less than
1/εw [10].∗ For our test cases, we found κnorm < 1/γεw small enough to provide reliable normwise
results and error estimates. The threshold 1/γεw is approximately 1.7 × 106 for our 100 × 100 test
cases. The componentwise results are reliable when κcomp < 1/γεw.

If a user requests solution of an extremely ill-conditioned matrix, our bounds can under- or
overestimate the error severely. When faced with Rump’s outrageously ill-conditioned matrices [26]
and random x, our algorithm either successfully solved the systems (O(εw) errors and bounds) or
correctly reported failure. However, Table 3 shows a small number of extreme mis-estimates, those
off by more than 100×, occur with normwise and componentwise ill-conditioned systems.

The extreme underestimates occur when refinement converges well to a “wrong” solution. Fig-
ure 16 shows the iteration history of one such matrix from Section 5.2’s test suite.† This matrix has
κcomp ≈ 4.2×1012, far above the 1/γεw ≈ 1.7×106 threshold. Algorithm 3 finds Bcomp ≈ 3.20×10−6

for a true error Ecomp ≈ 2.81 × 10−4, underestimating the componentwise error by over a factor
of 80. Refinement terminates for lack of progress. The final computed x̂ has a tiny residual,
‖r̂‖ < εr ≈ 10−16. As far as the residual is concerned, the computed x̂ solves Ax = b as well as the
true solution x does. These underestimates are unsurprising and unavoidable with finite precision
refinement.

The extreme overestimates may occur for two reasons, early termination and step magnification.
When Algorithm 3 terminates because i = ithresh, the current dx(i) is still improving the solution.
The final ‖dx(i)‖/‖x(i)‖ may be large although the error is small. Well-conditioned systems converge
almost immediately, so this can occur only for ill-conditioned systems.

Figure 17 illustrates the second cause of overestimates, steps magnified by an ill-conditioned
A. Here a small residual is magnified at iteration 4 to a large step, triggering the no-progress
termination criterion (17). Six further iterations show that the error has stopped decreasing, and
that our estimate would have matched the error had the iteration continued. This matrix is ill-
conditioned and ill-scaled‡, with κcomp ≈ 1.6 × 1013 and with a single column scaled by 217. The
residual drops below εr while the step ‖dz‖ and bound Bcomp hover around 10−4. Algorithm 3

∗A more precise but more complicated bound appears in [13].
†This underestimate can be reproduced with ./driver -u 0.5 -n 100 -seed 1972 97 1383 1741.
‡Produced by ./driver -u 0.5 -n 100 -seed 1235 3091 2150 2005 .

44

10−20

10−15

10−10

10−5

100

105

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

εr

εw

10εw

√
εw

Iteration i

‖dz(i+1)‖, step size
componentwise error

error estimate
‖r(i)‖, residual

Figure 16: Componentwise error is underestimated by a factor of over 80 for a very ill-conditioned system,
κcomp ≈ 4.2× 1012. Here Ecomp ≈ 2.81× 10−4, Bcomp ≈ 3.20× 10−6. Throughout this section, ρthresh = 0.5,
εw ≈ 5.96× 10−8, γεw = 10εw ≈ 5.96× 10−7,

√
εw ≈ 2.44× 10−4 and εr ≈ 2.22× 10−16. The step size and

error estimate are almost equal and mostly overlap.

10−20

10−15

10−10

10−5

100

105

1 2 3 4 5 6 7 8 9 10

εr

εw

10εw

√
εw

Iteration i

‖dz(i+1)‖, step size
componentwise error

error estimate
‖r(i)‖, residual

Figure 17: Componentwise error is overestimated at iteration 4 by over a factor of 100. The system is very
ill-conditioned, κcomp ≈ 4.2× 1012. Here E

(4)
comp ≈ 1.06× 10−6 and B

(4)
comp ≈ 3.37× 10−4. The step size and

error estimate are almost equal and mostly overlap.

45

terminates for lack of progress at iteration 4. The delivered solution has true componentwise error
Ecomp ≈ 10−6 and overestimates that error by two orders of magnitude. Again, this is unsurprising
and unavoidable with ill-conditioned matrices and finite-precision arithmetic.

It is also possible that the LU factorization of an ill-conditioned A is so poor that we solve en-
tirely the wrong system and underestimate our true error. In general, we cannot expect factorization
to identify all singular matrices. When presented with a singular system, however, Algorithm 3
computes large estimates Bnorm and Bcomp. To identify potentially singular matrices, any estimate
at least

√
εw is considered “infinite” and is set to one.

Consider Example 2.6 from [10], modified for single-precision IEEE754 arithmetic. The example
involves the exactly singular matrix

A =

3 · 2−7 −27 27

2−7 2−7 0
2−7 −3 · 2−7 2−7

 .

If we store b = A · [1, 1 + εw, 1]T as single-precision data, we introduce enough error to ensure
that Ax = b has no single-precision solution. Factorization succeeds in single precision without
equilibration, and subsequent refinement estimates a normwise relative Bnorm ≈ 0.3. Because there
is no solution, the true normwise relative error is infinite. When factored and solved in double
precision, refinement computes Bnorm ≈ 1014. With Section 2.2’s equilibration, this particularly
simple matrix is correctly identified as singular during factorization.

Because these effects are unavoidable, cautious users should declare Bnorm and Bcomp unreli-
able when κnorm ≥ 1/γεw (normwise results) or κcomp ≥ 1/γεw (componentwise). As an additional
precaution, our implementation treats Bnorm or Bcomp ≥

√
εw as a failure to converge. Any error

bound which does not converge is set to one. These thresholds are not guarantees, but we have
neither encountered nor constructed systems which pass these tests yet defeat our estimators.

7.2 Rounding Errors in Residual and Update Computations

The rounding errors in the residual (δr) and update (δy) were assumed negligible before termination
in Section 2. When paired with ill-conditioning, however, these errors prevent convergence and can
cause significant underestimates. Ultimately, round-off errors in the residual do not matter except
for extremely ill-conditioned systems. Round-off in the update, however, requires special handling
to achieve a reliable componentwise error estimate.

Algorithm 3’s error estimates and termination criteria do not directly include the residual.
Rounding in the residual is magnified through a condition number often close to our κnorm [13] and
impacts only the computation of dy(i+1). Figure 18 shows how single-precision residuals prevent
refinement from reducing even the normwise error for ill-conditioned systems (κnorm ≈ 1.9× 104).∗

The ratio of the error’s norm to the residual’s norm is roughly constant around 1000 for both the
single- and double-precision calculations. Because the single-precision residual’s error is limited by
εw ≈ 10−8, the error will not decrease below 10−5 > γεw.

If the residual is tiny and the system is well-conditioned by any reasonable measure, then the
computed y(i) is a good approximation to y. Underestimating any error is unlikely. At worst,
the round-off could increase dy(i+1) normwise or though some scaling, producing an overestimate

∗Produced by ./driver -u 0.5 -n 100 -seed 754 4072 1172 2893, with the both residual and solution limited
to single precision by -precs 0 0.

46

10−20

10−15

10−10

10−5

100

105

1 2 3 4

εr

εw

10εw

√
εw

Iteration i

‖dx(i+1)‖/‖x(i)‖, step size
normwise error
error estimate
‖r(i)‖, residual

(a) Residual calculated in single precision

10−20

10−15

10−10

10−5

100

105

1 2 3 4

εr

εw

10εw

√
εw

Iteration i

‖dx(i+1)‖/‖x(i)‖, step size
normwise error
error estimate
‖r(i)‖, residual

(b) Residual calculated in double precision

Figure 18: Calculating the residual in single precision prevents the normwise error from reaching γεw. Here
κnorm ≈ 1.9× 104. The step size and error estimate are almost equal and mostly overlap.

of the true error. If the system is ill-conditioned by our κnorm or κcomp measure, we have already
dismissed the results’ reliability. Condition numbers near our threshold 1/γεw may encounter under-
or over-estimates. We have neither encountered nor successfully constructed such cases.

The rounding errors δy(i) from updating y(i) = y(i−1) + dy(i) + δy(i) also limit our accuracy.
Following errors from Equation (5) through Equations (3) and (4), we see that the effect of δy(i) on
the next update dy(i+1) is (As + δA

(i+1)
s)−1Asδy

(i). The magnitude of δy(i) is bounded by εx|y(i)|,
and we expect this error to affect the normwise iteration only when κsεx = κ∞(As)εx significantly
exceeds εw.

The effect on the componentwise iteration, however, depends on dz(i+1) = Czdy(i+1), where
Cz = diag(y)−1. If we scale (As+δA

(i+1)
s)−1Asδy

(i) by Cz and assume that (As+δA
(i+1)
s)−1 ≈ A−1

s ,
then the effect on step i + 1’s update of rounding during step i’s update is bounded normwise by

‖diag(y)−1 · (As + δA(i+1)
s)−1As · diag(y) δz(i)‖ / εx ‖(As diag(y))−1‖ ‖As diag(y)‖.

We approximate the right-hand quantity with the computed solution ŷ in our κcomp. Representation
error εx only affects the componentwise solution when κcomp is sufficiently large.

Our algorithm squares εx whenever it suspects κcomp ≥ 1/γεw, so the update’s effect remains
negligible. The iteration history in Figure 19 shows how the doubled precision allows the residual’s
continued decrease.∗ In this example, κcomp ≈ 1.2× 108, and Algorithm 3 switched to carrying y(i)

to doubled precision after the first iteration. Both componentwise and normwise solutions halted
at iteration 6 with single-precision updates, resulting in errors of around 10−4. Refinement with
double-precision updates continues for ten iterations and reduces the error below γεw. The crucial
rounding errors occur moving from iteration 3 to iteration 4. The difference in magnitude between

∗Produced by ./driver -u 0.5 -n 100 -seed 3346 3503 2135 1313, with solution precision limited to single
by -precs 1 1.

47

10−20

10−15

10−10

10−5

100

105

1 2 3 4 5 6 7 8 9 10 11

εr

εw

10εw

√
εw

Iteration i

‖dz(i+1)‖, step size
componentwise error

error estimate
‖r(i)‖, residual

(a) Solution in single precision

10−20

10−15

10−10

10−5

100

105

1 2 3 4 5 6 7 8 9 10 11

εr

εw

10εw

√
εw

Iteration i

‖dz(i+1)‖, step size
componentwise error

error estimate
‖r(i)‖, residual

(b) Solution in doubled precision

Figure 19: Here refinement converges componentwise by carrying the computed solution to doubled preci-
sion. The step size and error estimate are almost equal and mostly overlap.

single-precision y and doubled precision for the relative step ‖dx(3)‖/‖x(3)‖ is around 2.8 × 10−5 ≈
470εw. The difference between values ‖dz(3)‖ is around 3.8×10−5 ≈ 640εw. Those small differences
in the updates allow Algorithm 3 to achieve componentwise and normwise errors of 10−7.

Without this extra check, the computed solution potentially could have large componentwise
error which would be underestimated drastically. Figure 20 shows one such underestimate,∗ with
κcomp ≈ 1.3 × 1011 and Ecomp ≈ 5000Bcomp. There is one component tiny in both x and y = Cx,
and only that component still is unconverged componentwise by the fourth iteration. But single-
precision rounding errors in updates halted the residual’s norm decrease by the third iteration. The
resulting dz(i) steps become similar to noise, eventually rounding the wrong way and “accidentally”
converging.

The most effective solution we have found is to increase the solution’s precision, decreasing εx

and preventing update rounding errors from compounding as quickly. Carrying y(i) to twice the
working precision achieves componentwise accuracy and reliable estimates in our tests. The residual
is computed with the full y(i), but the step dy(i+1) still is computed only to εw. But running with
εx ≤ ε2

w is expensive; such an iteration on our test platform takes around 1.5× as long to compute.
Using a doubled precision [19], we dynamically extend εx from εw to ε2

w when maxk y
(i)
k /mink y

(i)
k ≥

1/γεw. Dynamically increasing precision reduces the worst normwise underestimate factor from
1010 to 230 and the worst componentwise underestimate factor from 6300 to 320. An alternative
is to modify ρmax,z by using max{dy(i), εx‖y(i)‖∞} as the denominator. This alternative avoids the
underestimates, but it also weakens the error estimate for many well-behaved cases and does not
improve the true componentwise error.

∗Produced by ./driver -u 0.5 -n 100 -seed 3326 1514 1218 4009, with solution precision limited to single
by -precs 1 1.

48

10−20

10−15

10−10

10−5

100

105

1 2 3 4 5 6 7 8 9

εr

εw

10εw

√
εw

Iteration i

‖dz(i+1)‖, step size
componentwise error

error estimate
‖r(i)‖, residual

(a) Solution in single precision

10−20

10−15

10−10

10−5

100

105

1 2 3 4 5 6 7 8 9

εr

εw

10εw

√
εw

Iteration i

‖dz(i+1)‖, step size
componentwise error

error estimate
‖r(i)‖, residual

(b) Solution in doubled precision

Figure 20: Carrying the solution to doubled precision prevents severe componentwise error underestimates.
This refinement would underestimate the componentwise error by almost a factor of 5000. The step size and
error estimate are almost equal and mostly overlap.

7.3 Zero Components and Scaling

True solutions to linear systems may have exact zero components. These appear in optimization
applications when solving for directional derivatives at optimal or saddle points, in physical models
where forces or currents are balanced, etc. Exact or near zero entries could induce division by zero
or overflow when calculating the componentwise change dz. Our implementation protects against
zero components but does not use a threshold for tiny components. Exceptionally large entries
in the solution could cause underflows, but that underflow is correct; tiny dz components will not
change their solution entries.

First consider exact zero solutions from Ax = 0. If factorization of As succeeds, Algorithm 3
calculates y(1) = 0 exactly. The first residual r(1) = 0, so the step dy(2) = 0. When calculating
‖dx(i+1)‖/x(i+1) and ‖dz(i+1)‖, our implementation tests for zeros and substitutes the result 0/0 = 0.
So both Bnorm = 0 and Bcomp = 0. These tests also ensure our implementation does not encounter
IEEE754 exceptional behavior unnecessarily. Our implementation also ensures that systems with
block structure like [

A1 0
0 A2

]
·
[
x1

x2

]
=

[
b1

0

]
return the same bounds as the system A1x1 = b1. Also, any component, zero or not, occurring
during refinement is considered exact so long as the corresponding component of dx is also zero.
Rounding errors that result in computing dx

(i+1)
k = 0 could lead to falsely declaring the k-th

component “exact.” We do not protect our purely relative error bounds against these accidentally-
zero dx components; most such protections report large error bounds when solving Ax = 0.

When our implementation encounters a zero solution component corresponding to a non-zero
component of dy(i+1), that step’s norm ‖dz(i+1)‖ is set to a huge value. The componentwise solution

49

then is declared unstable (line 5 in Procedure new-z-state), and final-relnormz is set to ∞. If the
normwise solution has converged, refinement terminates and reports Bcomp = ∞. This behavior
is correct and cautious; the component may not be zero and we do not know even its sign. The
componentwise solution may re-stabilize once it has passed through the zero.

Dividing by a tiny solution component could cause an overflow while calculating ‖dz(i)‖. In this
case, the corresponding component of |dy(i)| is greater than the component of |y(i)|. We assume that
component’s sign is not specified accurately; the overflow yields a correctly large componentwise
relative error.

We have tested exact zero solution components with a special generator included with our
research code. The Octave [12] code (MATLABTM-compatible [20]) for this generator is in Ap-
pendix A. We have neither encountered nor constructed tests where the calculation of ‖dz(i)‖
induces an overflow, but the code handles infinite ‖dz(i)‖ correctly. Such a ‖dz(i)‖ will send the
componentwise solution back to the unstable state; see Procedure new-z-state on page 15.

7.4 Equilibration

As discussed in Section 2.2, we equilibrate the input system to ameliorate the effects of scaling on
a system’s conditioning. Our algorithm handles many ill-scaled systems well. Section 2.2’s equi-
libration fixes matched ill-scalings, where an ill-scaled column (or row) corresponds to a similarly
ill-scaled component in x (or b).

Consider a system Asy = bs that is not too ill-conditioned on its own and a very ill-conditioned,
diagonal R. If the rows and right-hand side are scaled by RAsy = Rbs, the resulting system will
have a large κ∞ but small κnorm. Unless the scaling loses information through over- or underflow,
simple equilibration allows refinement to produce an accurate answer to the ill-conditioned system.

Similar column and solution scaling by (AsC
−1) · (Cy) = b introduces one limitation, how-

ever. The infinity norm of x = Cy may be dominated by a single component; consider C =
diag(107, 1, 1, . . .). If that single component converges quickly enough, the componentwise changes
will not have stabilized, and Algorithm 3 will not produce a componentwise accurate answer. The
smaller components can be completely wrong! These drastic scalings produce large κcomp condition
numbers; Section 5.2’s test suite includes some of these cases in the componentwise ill-conditioned
results.

Section 2.2’s equilibration does not fix all cases of ill-scaling. Consider the ill-scaled matrix0 G G
G g 0
G 0 g

 ,

where G is extremely large and g extremely small. Our equilibration retains this matrix’s ill-scaling
and ill-conditioning.

In the most extreme case, G is the overflow threshold and g is the underflow threshold. Our
equilibration reduces this matrix to the singular matrix0 1 1

1 0 0
1 0 0

 .

Moreover, LAPACK’s current refinement routine equilibrates the input matrix in-place, overwriting
the user’s matrix. Underflow in equilibration destroys the user’s copy and unpleasantly affects many

50

http://www.octave.org/

subsequent computations. Fixing this problem requires changes to LAPACK which currently are
under consideration.

8 New Routines Proposed for LAPACK

The current LAPACK driver routine xGESVX calls the working precision iterative refinement routine
xGERFS which implements a variant of Algorithm 5. We propose to enhance LAPACK with the
new routines xGESVXX/xGERFSX, which include both Algorithms 3 and 5. It is worth pointing out
that the amount of work space for the new routines has not changed.

The following is the calling sequence of the current LAPACK routine SGERFS with single preci-
sion iterative refinement:

SUBROUTINE SGERFS(TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
+ X, LDX, FERR, BERR, WORK, IWORK, INFO)

The new routine SGERFSX has the following calling sequence:

SUBROUTINE SGERFSX(TRANS, EQUED , N, NRHS, A, LDA, AF, LDAF, IPIV,
+ R , C , B, LDB, X, LDX, RCOND , FERR, FERR_CMP ,
+ BERR, NPARAMS , PARAMS , WORK, IWORK, INFO)

The new arguments are EQUED, R, C, RCOND, FERR CMP, and an array of optional parameters of
length NPARAMS stored in PARAMS. EQUED specifies the form of equilibration performed on A before
calling this routine. If A was equilibrated, R and C contain the row and column scale factors. RCOND,
the condition number κ∞(As), has been added as an input argument; it is used when deciding to
carry y (stored in X) to extra precision. The new output argument is FERR CMP, which returns the
componentwise error bound (Bcomp in Algorithm 3) for each right-hand side. There is one notable
change in FERR and RCOND, as well. All quantities are now based on the stricter ∞-norm instead of
the 1-norm. Also, before returning to the user, any FERR or FERR CMP at least

√
εw is set to one.

The argument array PARAMS of length NPARAMS holds optional parameters. The symbolic names
are available through an include file∗. Only parameters from 1 to NPARAMS are referenced; if NPARAMS
≤ 0, PARAMS is not referenced and defaults are used. If a parameter entry passed to the routine is
negative, that parameter is replaced on output by the value used in the routine.

The following parameters are passed in PARAMS:

PARAMS(ITREF PARAM = 1) Precision used in performing iterative refinement. Symbolic names
are defined by the XBLAS. The default for single precision is BLAS PREC DOUBLE; defaults for
other precisions have not been determined. The following description is for the single-precision
SGERFSX code. See [17] for how BLAS PREC * affects other precisions.

0 Do not perform refinement.

BLAS PREC SINGLE Perform single-precision refinement. The routine is similar to the current
LAPACK routine SGERFS, with the following modifications (see Algorithm 5):

∗The * PARAM names and definitions likely will be changed once included into LAPACK proper. They are included
here for discussion.

51

• the column scaling factor C (or the row scaling factor R for the transposed system) is
directly applied to the scaled solution when estimating the error bound FERR, which
gives a better estimate for the solution of the original system, and

• a componentwise error bound FERR CMP is computed and returned.

BLAS PREC DOUBLE Perform the double-precision refinement as specified in Algorithm 3.

BLAS PREC INDIGENOUS For SGERFSX, if the compilation environment supports at least double
precision, act as if BLAS PREC DOUBLE. Otherwise act as if BLAS PREC SINGLE.

BLAS PREC EXTRA Use intermediate precision at least 1.5 times the base precision. In SGERFSX,
this is effectively BLAS PREC DOUBLE.

PARAMS(CONDTHRESH PARAM = 2) Condition number threshold where the error estimates are no
longer considered trustworthy. Change with extreme caution. Defaults to γεw.

PARAMS(ITHRESH PARAM = 3) Total number of residual computations allowed for refinement. De-
faults to 10 for double-precision refinement, 5 for single-precision refinement. Set this to 100
for our “aggressive” settings.

PARAMS(COMPONENTWISE PARAM = 4) Flag determining if the code will attempt to find a solution
with small componentwise relative error in the double-precision algorithm. Positive is true,
0.0 is false. Defaults to 1.0.

PARAMS(RTHRESH PARAM = 5) Our ρthresh used in criterion (17), the ratio of consecutive “step sizes”
required to continue relative normwise or componentwise refinement. Defaults to 0.5. Set
this to 0.9 for our “aggressive” settings.

PARAMS(DZTHRESH PARAM = 6) Our dzthresh, the threshold where the solution is considered stable
enough for computing componentwise measurements. Defaults to 0.25.

The following is the calling sequence of the new driver routine SGESVXX:

SUBROUTINE SGESVXX(FACT, TRANS, N, NRHS, A, LDA, AF, LDAF,
+ IPIV, EQUED, R, C, B, LDB, X, LDX, RCOND,
+ FERR, RCOND_NRM , FERR_CMP , RCOND_CMP , BERR,
+ NPARAMS , PARAMS , WORK, IWORK, INFO)

Compared with the current driver routine SGESVX, the new arguments are FERR CMP (output),
RCOND NRM (output), RCOND CMP (output), and the parameter array PARAMS (input / output) of
length NPARAMS (input). FERR CMP, NPARAMS, and PARAMS are as explained above. RCOND NRM
returns κnorm for the entire system, and the NRHS-long array RCOND CMP returns κcomp for each
right-hand side. A cautious user should disregard FERR if RCOND NRM < γεw, and also FERR CMP
if RCOND CMP < γεw. The value γεw suggested for given parameters is returned to the user in
PARAMS(CONDTHRESH PARAM) when a negative number is passed in that parameter, but γεw is
always safe. As with SGERFSX, the estimates and condition numbers are now based on the∞-norm,
and estimates at least

√
εw are set to one.

52

9 Conclusions and Future Work

We have presented a new variation on the extra precise iterative refinement algorithm for the
solution of linear systems of equations. With negligible extra work we can return a bound on
the maximum relative error in any solution component, as well as the traditional normwise error
bound. We prove this by means of an error analysis that exploits the column scaling invariance
of the algorithm. With the availability of the extended precision BLAS standard, the algorithm
can be implemented in a portable way. Based on a large number of numerical experiments (two
million each of 5× 5, 10× 10, and 100× 100 test matrices, and two hundred thousand 1000× 1000
matrices), we show that the algorithm converges quickly for all but the worst conditioned problems
(i.e. for condition numbers no larger than about the reciprocal of machine precision 1/εw) and that
the corresponding error bounds are very reliable. The algorithm also converges for a large fraction
of the extremely ill-conditioned problems (with condition numbers exceeding 1/εw) although the
error bounds occasionally underestimate the true error. Some difficulties with the badly scaled
problems (i.e. with greatly varying solution components) can be overcome by using extra precision
for the updated x (the so-called double-x iteration).

In particular, as long as a normwise condition number κnorm computed by the algorithm does
not exceed 1/γεw, the algorithm returned a tiny, correct normwise error bound in all cases tested.
Similarly, as long a componentwise condition number κcomp computed by the algorithm does not
exceed 1/γεw, the algorithm returned a tiny, correct componentwise error bound in all cases tested.
Based on these results, we believe the algorithm is very reliable.

Programming systems like MATLAB [20] that are used to solve Ax = b may return a warning
that A is nearly singular, based on a condition estimator. This condition estimator, like our algo-
rithm, costs just a few triangular solves, i.e. very little extra beyond the triangular factorization for
medium to large n. Therefore, these programming systems could consider using iterative refinement
as a default, issuing a warning only if the system is not guaranteed to be fully accurate, because
κnorm (or κcomp) is too large.

Our algorithm applies to all the other LAPACK [1] and ScaLAPACK [4] linear system solvers.
Additional structure in symmetric and banded systems may allow better error estimates or earlier
termination. Section 2’s error analysis needs to be extended to these systems. Choosing appropriate
condition numbers for symmetric linear systems presents an interesting challenge. Our κnorm =
κ∞(R ·A) assumes that the domain and range can be scaled independently, but the two are scaled
simultaneously for symmetric systems.

The majority of computers contain processors implementing Intel’s IA32 architecture [15]. These
computers support 80-bit floating-point arithmetic at full hardware speed. The 80-bit arithmetic
is an implementation of IEEE754 double-extended precision. Future work will extend Algorithm 3
and its error analysis to include using this kind of extended precision.

We also plan to study how aspects of Algorithm 3 benefit sparse linear systems. In particu-
lar, these techniques may assist our parallel sparse direct solver SuperLU DIST [18], where static
pivoting instead of partial pivoting is used for numerical stability. In an unpublished report [36],
Wilkinson points out this potential benefit even with single precision residual computations: “. . .
when x0 has been determined by a direct method of some poorer numerical stability than Gaussian
elimination with pivoting . . . the use of d(0) as an actual correction should yield substantial divi-
dends . . . and may be of great value in the solution of sparse systems when pivoting requirements
have been relaxed.” Our additional contributions, improved termination criteria and additional

53

precision for the solution, may carry refinement even further.

A Generating Systems with Exact Zero Solution Components

The following Octave [12] (or MATLABTM [20]) function generates an ill-conditioned test system
Ax = b where the returned solution is exact and can contain exact zero components.

1 function [A, X, B] = crnd (nn , kk , p)
% [A,X,B] = crnd (n , k , p) r e tu rn s three n x n matr i ce s among which
% A/p and p∗X have random i n t e g e r e n t r i e s , and B = (A/p)∗ (p∗X)
% exact ly , but X has mostly non integer e n t r i e s . A can be i l l −
% cond i t i oned too ; i t s cond i t i on number i s at l e a s t about 2ˆk .

6 % I f omitted , k d e f a u l t s to 16 ; o therw i s e 2 =< k =< 18 . And
% 2 < | p | = (a smal l odd in t ege r , p r e f e r a b l y a prime) < 16 ; i t s
% d e f a u l t i s 3 . I f p > 0 then some e n t r i e s o f X w i l l be zeros .
i f nargin < 3 , p = 3 ; end
sp = (p > 0) ; p = abs (p) ;

11 i f not (any ([3 5 7 9 11 13 15] == p)) , sp = 1 ;
disp (’p in crnd (n , k , p) has been changed to ’) , p = 3 , end

i f nargin < 2 , kk = 16 ; end
k = max(2 , min(18 , round(kk))) ; i f (k ˜= kk) ,

disp (’ k in crnd (n , k , p) has been changed to ’) , k , end
16 n = max(3 , min(1000 , round(nn))) ; i f (n ˜= nn) ,

disp (’n in crnd (n , k , p) has been changed to ’) , n , end
tk = 2ˆk ; % . . . c ond i t i on no . o f A w i l l be at l e a s t about tk .
A = f ix ((2∗ tk)∗ (rand (n) − 0 . 5)) ; % . . . random k−b i t i n t e g e r s .
X = inv (A) ; [r , i] = max(abs (X)) ; [c , j] = max(r) ; i = i (j) ;

21 A(j , i) = A(j , i) − round(1/X(i , j)) ;% . . . makes A i l l −cond i t i oned .
c = (2ˆ(23 − k))/ n ; % . . . s i n c e a r i thmet i c c a r r i e s 24 s ig , b i t s .
X = f ix ((2∗ c)∗rand (n) − c) ; % . . . random (52−k)−b i t i n t e g e r s .
while sp&any(a l l (X)) , % . . . s p r i n k l e some zeros i n t o X :

r = 0 ;
26 while (any(a l l (r ==0))) , r = (rand (n) > 0 . 25) ;

while any(a l l (r)) , r = (rand (n) > 0 . 2 5) . ∗ r ; end , end
X = r .∗X ;

end % . . . s p r i n k l i n g zeros
B = A∗X ; % . . . exact ly , with i n t e g e r e n t r i e s at most 23 b i t s wide .

31 A = p∗A ; % . . . exact ly , with i n t e g e r e n t r i e s at most k+4 b i t s wide .
X = X/p ; % . . . rounded , with rounding e r r o r s each at worst 1/2 ulp .

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide, Release 3.0.
SIAM, Philadelphia, 1999. URL http://www.netlib.org/lapack/lug/. 407 pages.

[2] IEEE Standard for Binary Floating Point Arithmetic. ANSI/IEEE, New York, Std 754-1985
edition, 1985. URL http://grouper.ieee.org/groups/754/.

54

http://www.netlib.org/lapack/lug/
http://grouper.ieee.org/groups/754/

[3] Åke Björck. Iterative refinement and reliable computing. In M.G. Cox and S.J. Hammarling,
editors, Reliable Numerical Computation, pages 249–266. Oxford University Press, 1990.

[4] L. S. Blackford, J. Choi, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide.
SIAM, Philadelphia, 1997. URL http://www.netlib.org/scalapack/slug/. 325 pages.

[5] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux,
L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, Z. Maany,
F. Krough, G. Corliss, C. Hu, B. Keafott, W. Walster, and J. Wolff v. Gudenberg. Basic Linear
Algebra Subprograms Technical (BLAST) Forum Standard. Intern. J. High Performance
Comput., 15(3-4), 2001. URL http://www.netlib.org/blas/blast-forum/.

[6] H.J. Bowdler, R.S. Martin, G. Peters, and J.H. Wilkinson. Handbook series linear algebra:
Solution of real and complex systems of linear equations. Numerische Mathematik, 8:217–234,
1966.

[7] Yang Cao and Linda Petzold. A subspace error estimate for linear systems. SIAM Journal
on Matrix Analysis and Applications, 24(3):787–801, 2003. URL http://epubs.siam.org/
sam-bin/dbq/article/39064.

[8] S. Chandrasekaran and I. C. F. Ipsen. On the sensitivity of solution components in linear
systems of equations. SIAM Journal on Matrix Analysis and Applications, 16(1):93–112, 1995.
URL http://epubs.siam.org/sam-bin/dbq/article/23125.

[9] Intel Corporation. Math kernel library 7.2. URL http://www.intel.com/software/
products/mkl/.

[10] James W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.

[11] J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK Users’ Guide. SIAM,
Philadelphia, 1979.

[12] John W. Eaton. GNU Octave Manual. Network Theory Limited, 2002. ISBN 0-9541617-2-6.
URL http://www.octave.org/.

[13] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA,
second edition, 2002. ISBN 0-89871-521-0. URL http://www.ma.man.ac.uk/∼higham/asna/.

[14] American National Standards Institute. American National Standard programming language,
FORTRAN. American National Standard; ANSI X3.9-1978 CSA standard; Z243.18-1980
American National Standards Institute. American National Standard; ANSI X3.9-1978. Cana-
dian Standard Association. CSA standard; Z243.18-1980. American National Standards In-
stitute, 1430 Broadway, New York, NY 10018, USA, revised edition, 1978. URL http:
//www.fortran.com/fortran/F77 std/rjcnf.html.

[15] IA-32 IntelTM Architecture Software Developer’s Manual, Volume 1: Basic Architecture. Intel
Corporation, 2004. URL http://developer.intel.com/design/pentium4/manuals/index
new.htm#sdm vol1. Order #253665.

55

http://www.netlib.org/scalapack/slug/
http://www.netlib.org/blas/blast-forum/
http://epubs.siam.org/sam-bin/dbq/article/39064
http://epubs.siam.org/sam-bin/dbq/article/39064
http://epubs.siam.org/sam-bin/dbq/article/23125
http://www.intel.com/software/products/mkl/
http://www.intel.com/software/products/mkl/
http://www.octave.org/
http://www.ma.man.ac.uk/~higham/asna/
http://www.fortran.com/fortran/F77_std/rjcnf.html
http://www.fortran.com/fortran/F77_std/rjcnf.html
http://developer.intel.com/design/pentium4/manuals/index_new.htm#sdm_vol1
http://developer.intel.com/design/pentium4/manuals/index_new.htm#sdm_vol1

[16] Andrzej Kie lbasiński. Iterative refinement for linear systems in variable-precision arithmetic.
BIT, 21:97–103, 1981.

[17] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y. Kang,
A. Kapur, M. C. Martin, B. J. Thompson, T. Tung, and D. J. Yoo. Design, Implementation
and Testing of Extended and Mixed Precision BLAS. ACM Transactions on Mathematical
Software, 28(2):152–205, 2002. URL http://www.nersc.gov/∼xiaoye/XBLAS.

[18] Xiaoye S. Li and James W. Demmel. SuperLU DIST: A scalable distributed-memory sparse
direct solver for unsymmetric linear systems. ACM Transactions on Mathematical Software,
29(2):110–140, June 2003. URL http://doi.acm.org/10.1145/779359.779361.

[19] Seppo Linnainmaa. Software for doubled-precision floating-point computations. ACM Trans-
actions on Mathematical Software, 7(3):272–283, September 1981. ISSN 0098-3500. URL
http://doi.acm.org/10.1145/355958.355960.

[20] MathWorks, Inc. MatlabTM. URL http://www.mathworks.com/.

[21] Sun Microprocessors. Performance libraries 6.0. URL http://developers.sun.com/
prodtech/cc/perflib index.html.

[22] Cleve B. Moler. Iterative refinement in floating point. Journal of the Association for Computing
Machinery, 14(2):316–321, 1967. URL http://doi.acm.org/10.1145/321386.321394.

[23] UML 1.4. Unified Modelling Language Specification, version 1.4. Object Modeling Group,
September 2001. URL http://www.omg.org/cgi-bin/doc?formal/01-09-67.

[24] Siegfried M. Rump. Structured perturbations part I: Normwise distances. SIAM Journal on
Matrix Analysis and Applications, 25(1):1–30, January 2004. ISSN 0895-4798 (print), 1095-
7162 (electronic). URL http://epubs.siam.org/sam-bin/dbq/article/40573.

[25] Siegfried M. Rump. Structured perturbations part II: Componentwise distances. SIAM Journal
on Matrix Analysis and Applications, 25(1):31–56, January 2004. ISSN 0895-4798 (print),
1095-7162 (electronic). URL http://epubs.siam.org/sam-bin/dbq/article/40574.

[26] Siegfried M. Rump. A class of arbitrarily ill conditioned floating-point matrices. SIAM Journal
on Matrix Analysis and Applications, 12(4):645–653, October 1991. URL http://locus.siam.
org/SIMAX/volume-12/art 0612049.html.

[27] S.M. Rump. Solving algebraic problems with high accuracy. In U.W. Kulisch and W.L.
Miranker, editors, A New Approach to Scientific Computation, pages 51–120. Academic Press,
1983.

[28] S.M. Rump. Verified computation of the solution of large sparse linear systems. Zeitschrift
für Angewandte Mathematik und Mechanik (ZAMM), 75:S439–S442, 1995.

[29] R. D. Skeel. Iterative refinement implies numerical stability for Gaussian elimination. Math.
Comput., 35:817–832, 1980.

[30] G. W. Stewart. Introduction to Matrix Computations. Academic Press, New York, 1973. ISBN
0-89871-355-2. xiii+441 pp.

56

http://www.nersc.gov/~xiaoye/XBLAS
http://doi.acm.org/10.1145/779359.779361
http://doi.acm.org/10.1145/355958.355960
http://www.mathworks.com/
http://developers.sun.com/prodtech/cc/perflib_index.html
http://developers.sun.com/prodtech/cc/perflib_index.html
http://doi.acm.org/10.1145/321386.321394
http://www.omg.org/cgi-bin/doc?formal/01-09-67
http://epubs.siam.org/sam-bin/dbq/article/40573
http://epubs.siam.org/sam-bin/dbq/article/40574
http://locus.siam.org/SIMAX/volume-12/art_0612049.html
http://locus.siam.org/SIMAX/volume-12/art_0612049.html

[31] V. Strassen. Gaussian Elimination is not optimal. Numerical Mathematica, 13:354–356, 1969.

[32] L.N. Trefethen and R.S. Schreiber. Average-case stability of gaussian elimination. SIAM
Journal on Matrix Analysis and Applications, 11(3):335–360, 1990. URL http://locus.siam.
org/SIMAX/volume-11/art 0611023.html.

[33] A. van der Sluis. Stability of solutions of linear algebraic systems. Numerische Mathematik,
14:246–251, 1970.

[34] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical opti-
mization of software and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.
URL http://www.netlib.org/lapack/lawns/lawn147.ps. Also available as University of
Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000 (http://www.netlib.org/
lapack/lawns/lawn147.ps).

[35] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Notes on Applied Science No.
32, Her Majesty’s Stationery Office, London, 1963. ISBN 0-486-67999-3. Also published by
Prentice-Hall, Englewood Cliffs, NJ, USA. Reprinted by Dover, New York, 1994.

[36] J.H. Wilkinson. The use of single-precision residuals in the solution of linear systems. Unpub-
lished manuscript, NPL, 1977.

57

http://locus.siam.org/SIMAX/volume-11/art_0611023.html
http://locus.siam.org/SIMAX/volume-11/art_0611023.html
http://www.netlib.org/lapack/lawns/lawn147.ps
http://www.netlib.org/ lapack/ lawns/ lawn147.ps
http://www.netlib.org/ lapack/ lawns/ lawn147.ps

	Introduction
	Error Analysis
	Normwise Error Estimate
	Equilibration and Choice of Scaled Norms
	Componentwise Error Estimate
	Termination Criteria and Employing Additional Precision

	Algorithmic Details
	Related Work
	Testing Configuration
	Review of the XBLAS
	Test Matrix Generation
	Test Matrix Statistics
	Accuracy of Single Precision Condition Numbers
	Testing Platforms

	Numerical Results
	Normwise Error Estimate
	Componentwise Error Estimate
	Iteration Counts and Running Time
	Effects of various parameters in Algorithm 3
	Effect of doubled-x iteration
	Effect of rthresh
	Justification of various components in the error bound

	``Cautious'' versus ``aggressive'' parameter settings

	Limitations of Refinement and our Bounds
	Conditioning
	Rounding Errors in Residual and Update Computations
	Zero Components and Scaling
	Equilibration

	New Routines Proposed for LAPACK
	Conclusions and Future Work
	Generating Systems with Exact Zero Solution Components

