
Error Bounds from Extra-Precise Iterative
Refinement

JAMES DEMMEL, YOZO HIDA, and WILLIAM KAHAN

University of California, Berkeley

XIAOYE S. LI

Lawrence Berkeley National Laboratory

SONIL MUKHERJEE

Oracle

and

E. JASON RIEDY

University of California, Berkeley

We present the design and testing of an algorithm for iterative refinement of the solution of linear

equations where the residual is computed with extra precision. This algorithm was originally

proposed in 1948 and analyzed in the 1960s as a means to compute very accurate solutions to all

but the most ill-conditioned linear systems. However, two obstacles have until now prevented its

adoption in standard subroutine libraries like LAPACK: (1) There was no standard way to access

the higher precision arithmetic needed to compute residuals, and (2) it was unclear how to compute

a reliable error bound for the computed solution. The completion of the new BLAS Technical Forum

Standard has essentially removed the first obstacle. To overcome the second obstacle, we show how

the application of iterative refinement can be used to compute an error bound in any norm at small

cost and use this to compute both an error bound in the usual infinity norm, and a componentwise

relative error bound.

This research was supported in part by the NSF Cooperative Agreement No. ACI-9619020; NSF

Grant Nos. ACI-9813362 and CCF-0444486; the DOE Grant Nos. DE-FG03-94ER25219, DE-FC03-

98ER25351, and DE-FC02-01ER25478; and the National Science Foundation Graduate Research

Fellowship. The authors wish to acknowledge the contribution from Intel Corporation, Hewlett-

Packard Corporation, IBM Corporation, and the National Science Foundation grant EIA-0303575

in making hardware and software available for the CITRIS Cluster which was used in producing

these research results.

Authors’ addresses: J. Demmel, Computer Science Division and Mathematics Dept., University

of California, Berkeley, CA 94720; email: demmel@cs.berkeley.edu; Y. Hida, Computer Science

Division, University of California, Berkeley, CA 94720; email: yozo@cs.berkeley.edu; W. Kahan,

Computer Science Division and Mathematics Dept., University of California, Berkeley, CA 94720;

email: wkahan@cs.berkeley.edu; X. S. Li, Computational Research Division, Lawrence Berkeley

National Laboratory, Berkeley, CA 94720; email: xsli@lbl.gov; S. Mukherjee, Oracle, 100 Oracle

Parkway, Redwood Shores, CA 94065; email: sonil.mukherjee@oracle.com; E. J. Riedy, Computer

Science Division, University of California, Berkeley, CA 94720; email: ejr@cs.berkeley.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0098-3500/06/0600-0325 $5.00

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006, Pages 325–351.



326 • J. Demmel et al.

We report extensive test results on over 6.2 million matrices of dimensions 5, 10, 100, and 1000.

As long as a normwise (componentwise) condition number computed by the algorithm is less than

1/max{10,
√

n}εw , the computed normwise (componentwise) error bound is at most 2 max{10,
√

n} · εw,

and indeed bounds the true error. Here, n is the matrix dimension and εw = 2−24 is the working

precision. Residuals were computed in double precision (53 bits of precision). In other words, the

algorithm always computed a tiny error at negligible extra cost for most linear systems. For worse

conditioned problems (which we can detect using condition estimation), we obtained small correct

error bounds in over 90% of cases.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra—

Linear systems (direct and iterative methods), Error analysis

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Linear algebra, LAPACK, BLAS, floating-point arithmetic

1. INTRODUCTION

Iterative refinement is a technique for improving the accuracy of the solution
of a system of linear equations Ax = b. Given some basic solution method (such
as Gaussian Elimination with Partial Pivoting—GEPP), the basic algorithm is
as follows.

Algorithm 1: Basic iterative refinement

Input: An n × n matrix A, and an n × 1 vector b
Output: A solution vector x(i) approximating x in Ax = b, and

an error bound ≈‖x(i)−x‖∞ /‖x‖∞
Solve Ax(1) = b using the basic solution method
i = 1
repeat

Compute residual r (i) = Ax(i) − b
Solve A d x(i+1) = r (i) using the basic solution method
Update x(i+1) = x(i) − d x(i+1)

i = i + 1
untill x(i) is “accurate enough”

return x(i) and an error bound

(Note that x(i) is a vector, and we use the notation x(i)
j to mean the j -th compo-

nent of x(i).)
This can be thought of as Newton’s method applied to the linear system

f (x) = Ax − b. In the absence of error, Newton’s method should converge im-
mediately on a linear system, but the presence of a rounding error in the inner
loop prevents immediate convergence and makes the behavior and analysis
interesting.

Mixed precision iterative refinement was first used by Wilkinson [1948] and
Snyder [1955]. Analysis of Wilkinson [Bowdler et al. 1966] and Moler [1967]
show that, if the residual is computed to about double the working precision,
then the solution x(i) will converge to roughly working precision as long as the
condition number of A is not too large (sufficiently less than 1/εw, where εw is
the working precision). Furthermore, the cost of this high accuracy is negligible:
O(n2) on top of the O(n3) cost of straightforward Gaussian elimination.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



Error Bounds from Extra-Precise Iterative Refinement • 327

With the exception of NAG Library [NAG Ltd 2005], this attractive algorithm
has not been widely adopted. Its conspicuous omission from other standard
libraries such as LAPACK [Anderson et al. 1999] or its predecessor LINPACK
[Dongarra et al. 1979] can be attributed to two obstacles: (1) the lack of a
portable implementation of higher precision arithmetic to compute the residual,
and (2) the lack of a good way to compute a reliable error bound for the corrected
solution. The recent completion of the BLAS Technical Forum Standard [Forum
2002a, 2002b] has essentially eliminated the first obstacle, and our goal in this
article is to eliminate the second obstacle.

Section 2 summarizes the error analysis of Algorithm 1. This analysis justi-
fies our stopping criterion and bound for the normwise relative error

Bnorm
def= ‖x(i) − x‖∞

‖x‖∞
. (1)

Here and later, x = A−1b denotes the exact solution, assuming A is not singular.
Note that Algorithm 1 is column scaling invariant. More precisely, if we as-

sume that (1) our basic solution scheme is GEPP without any Strassen-like
implementation [Strassen 1969], (2) no overflow or underflow occurs, and (3)
C is any diagonal matrix whose diagonal entries are powers of the floating-
point radix β (β = 2 in the case of IEEE-754 floating-point standard arith-

metic [ANSI/IEEE 1985]), then replacing the matrix A by Ac
def= AC results in

exactly the same roundoff errors being committed: the exact solution xc of the
scaled system Acxc = b satisfies xc = C−1x where Ax = b, and every interme-
diate floating-point approximation satisfies x(i)

c = C−1x(i) exactly.
This means that a single application of Algorithm 1 (producing a sequence

of approximations x(i)) can be thought of as implicitly producing the sequence
x(i)

c for any scaled system Acxc = b. Thus at a modest extra cost, we can modify
Algorithm 1 to compute the stopping criterion and error bound for xc for any
diagonal scaling C. (The extra cost is O(n) per iteration, whereas one iteration
costs O(n2) if A is a dense matrix.) Using this, we can cheaply compute a bound
on the scaled relative error

‖C−1(x(i) − x)‖∞
‖C−1x‖∞

(2)

for any scaling C.
Of the many C one might choose, a natural one is C ≈ diag(x) so that each

component xc, j ≈ 1. Then the scaled relative error (2) becomes the component-
wise relative error in the solution. There are two conditions for this to work.
First, no component of x can equal 0 since, in this case, no finite componentwise
relative error bound exists (unless the component is computed exactly). Second,
the algorithm must converge at least partially (since C, which is computed on-
the-fly, will affect the stopping criterion too).

Section 2 summarizes the precise stopping criterion and error bound for Al-
gorithm 1. This analysis leads to two condition numbers that predict the success
of iterative refinement. Let n be the matrix dimension and εw be the working
precision. Error analysis shows that, if the normwise condition number κnorm(A)
does not exceed 1/γ εw (where γ is a function of n), then the algorithm converges

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



328 • J. Demmel et al.

with small normwise error and error bound. Similarly, if the componentwise
condition number κcomp(A) does not exceed 1/γ εw , then we obtain convergence
with small componentwise error and error bound. The following numerical ex-
periment described below confirms this result and gives an empirical value
γ = max{10,

√
n}.

Section 3 describes our ultimate algorithm, Algorithm 2. This algorithm dif-
fers from Algorithm 1 in several important ways besides computing both norm-
wise and componentwise error bounds. In particular, if consecutive corrections
d x(i) are not decreasing rapidly enough, the algorithm increases the precision
of the solution by switching to represent x(i) in doubled working precision, that
is, by a pair of working precision arrays representing (roughly) the leading and
trailing bits of x(i) as though it were in double precision. Iteration continues
subject to the same progress monitoring scheme. This significantly improves
componentwise accuracy on the most ill-conditioned problems.

Extensive numerical tests on over two million 100 × 100 test matrices are
reported in Section 6. Similar results were obtained on two million 5×5 matri-
ces, two million 10 × 10 matrices, and 2 · 105 1000 × 1000 matrices. These test
cases include a variety of scalings, condition numbers, and ratios of maximum
to minimum components of the solution.

We summarize the results of these numerical tests. All of our experiments are
conducted using IEEE-754 single precision as the working precision (εw = 2−24).
IEEE-754 double precision is used for residual computation (εr = 2−53). First
we consider the normwise error and error bound. For problems that are not too
ill-conditioned (those with κnorm(A) < 1/γ εw ), Algorithm 2 always computed an
error bound of at most 2γ εw, which exceeded the true error. For even more ill-
conditioned problems (with κnorm ranging from 1/γ εw to ε−2

w ), Algorithm 2 still gets
similarly small normwise error bounds and true errors in 96% of cases. Note
that we can detect this extreme ill-conditioning using condition estimators.

Next we consider the componentwise error and error bound. For problems
that are not too ill-conditioned (those with κcomp(A) < 1/γ εw ), Algorithm 2 always
computed an error bound of at most 2γ εw, which again exceeded the true error.
For these problems the number of iterations required was at most 4, with a
median of 2. For even more ill-conditioned problems, with componentwise con-
dition numbers κcomp ranging up past ε−2

w , Algorithm 2 still gets similarly small
componentwise error bounds and true errors in 94% of cases. As in the normwise
case, this extreme ill-conditioning is detected using condition estimators.

Our use of extended precision is confined to two routines for computing the
residual r (i) = Ax(i) −b, one where all the variables are stored in working preci-
sion, and one where x(i) is stored as a pair of vectors each in working precision:
r (i) = Ax(i) + Ax(i)

t − b. The first operation r (i) = Ax(i) − b is part of the recently
completed new BLAS standard [Forum 2002a, 2002b] for which portable imple-
mentations exist [Li et al. 2002]. The second operation r (i) = Ax(i)+ Ax(i)

t −b was
not part of the new BLAS standard because its importance was not recognized.
Nevertheless, it is straightforward to implement in a portable way using the
same techniques as in Li et al. [2002]. Even without this second operation, our
algorithm manages to obtain small true errors and error bounds for problems
that are not too ill-conditioned.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



Error Bounds from Extra-Precise Iterative Refinement • 329

The rest of this article is organized as follows. Section 2 summarizes the error
analysis of our algorithm, including their invariance under column scaling (see
Demmel et al. [2004, Section 2] for details). Section 3 describes the ultimate
algorithm, Algorithm 2. Section 4 describes related work. Section 5 describes
the testing configuration, including how test matrices are generated. Section 6
presents the results of numerical tests. Finally, Section 7 draws conclusions
and describes future work.

2. ERROR ANALYSIS

In this section, we give a summary of the error analysis used to justify our
choices for termination criteria, error estimates, and the accuracy with which
each step is performed. For details see Demmel et al. [2004, Section 2].

Let the true forward error of iteration i be e(i) def= x(i) − x. Our main contribu-
tions are (1) to show that the termination criteria and error estimates apply not
just to ‖e(i)‖∞ but to any diagonally scaled error ‖Ce(i)‖∞, and (2) to derive an
estimated condition number (depending on C) that can be used to identify linear
systems when convergence to an accurate solution is guaranteed as opposed to
extremely ill-conditioned cases where such convergence is only likely.

Our algorithm uses three different precisions.

—εw is the working precision used to store the input data A and b. The factoriza-
tion of A is also carried out in this precision. In our numerical experiments,
we use IEEE-754 single precision as the working precision (εw = 2−24).

—εx is the precision used to store the computed solution x(i). It is at least the
working precision, possibly twice the working precision (εx ≤ ε2

w) if necessary
for componentwise convergence. In our numerical experiments, we use IEEE-
754 single initially and switch to doubled single precision (εx = ε2

w = 2−48)
if required for componentwise convergence. The criteria for choosing εx is
discussed later.

—εr is the precision used to compute the residuals r (i). We usually have εr � εw,
typically at least twice the working precision (εr ≤ ε2

w). In our numerical
experiments, we use IEEE-754 double precision as the working precision
(εw = 2−53).

Using this notation, the computed results r (i), d x(i+1), and x(i+1) from iteration
i of Algorithm 1 satisfy the expressions

r (i) = Ax(i) − b + δr (i) where |δr (i)| ≤ nεr (|A| · |x(i)| + |b|) + εw|r (i)|, (3)

d x(i+1) = (A + δA(i+1))−1r (i) where |δA(i+1)| ≤ 3nεw|L| · |U |, and (4)

x(i+1) = x(i) − d x(i+1) + δx(i+1) where |δx(i+1)| ≤ εx |x(i+1)|. (5)

Absolute values of matrices and vectors are interpreted elementwise.
Classical analysis in Bowdler et al. [1966] and Moler [1967] show that, if

we ignore the errors δr (i) and δx(i+1), then the correction ‖dx(i+1)‖∞ decreases

by a factor of at most ρ = O(εw)‖A‖∞‖A−1‖∞ at every step. Thus if κ∞(A)
def=

‖A‖∞‖A−1‖∞ is sufficiently less than 1/εw (so that ρ < 1), then the solution

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



330 • J. Demmel et al.

x = x(1) − ∑∞
j=2 dx( j ) converges like a geometric sum, so that

‖e(i)‖∞ = ‖x − x(i)‖∞ ≤
∞∑

j=i+1

‖dx( j )‖∞ ≤ ‖dx(i+1)‖∞
1 − ρ

.

We can conservatively estimate the rate of convergence by taking the maximum
ratio of successive correction: ρmax

def=max j≤i
‖d x( j+1)‖∞

‖d x( j )‖∞
. This estimated rate leads to a

crude bound for the norm of the error

‖e(i)‖∞ ≤ ‖dx(i+1)‖∞
(1 − ρmax)

.

This crude bound is the basis of our computed error bound. The bound will be
reliable as long as convergence is fast enough, that is, ρmax does not exceed some
ρthresh < 1. Wilkinson [1963] chose ρthresh = 1/2 which we use for our cautious
mode. Our normwise error bound is thus

Bnorm
def= max

{ ‖d x(i+1)‖∞/‖x(i)‖∞

1 − ρmax

, γ εw

}
≈ ‖x(i) − x‖∞

‖x‖∞
def= Enorm, (6)

where γ = max(10,
√

n) has been chosen based on our numerical experiments
to account for dependence of error on dimension.

Geometric convergence will cease when the rounding errors δr (i) and
δx(i+1) become significant. We detect this by checking whether the ratio
‖dx(i+1)‖∞/‖dx(i)‖∞ of successive corrections exceeds the threshold ρthresh.

The refinement will stop if any of the following three condition applies:

(1) ‖d x(i+1)‖∞
‖x(i)‖∞

≤ εw (the correction dx(i+1) changes solution x(i) too little)

(2) ‖d x(i+1)‖∞
‖d x(i)‖∞

≥ ρthresh (convergence slows down sufficiently)

(3) i > ithresh (too many iterations have been performed)

When the refinement stops, we return an error bound based on (6).
We now discuss diagonal scaling of A. Existing linear equation solvers may

already equilibrate, that is, replace the input matrix A by As = R · A · C, where
R and C are diagonal matrices chosen to try to make κ∞(As) much smaller than
κ∞(A). This scaling changes the linear system from Ax = b to Asxs = bs, where
xs = C−1x and bs = Rb. We perform iterative refinement on the scaled matrix
As.

If we choose diagonal entries of R and C to be powers of the floating-point
radix β, then no additional rounding error is introduced by factoring As rather
than A. R has no effect on x or the way we measure error but can affect the
pivot choices during factorization as well as the convergence rate and the scaled
condition number. In contrast, C affects only the norm in which we measure
the error of x.

Iterative refinement on the system Asxs = rs produces a sequence of scaled
corrections dx(i)

s and solutions x(i)
s . But conventional implementations of LU

decomposition are column-scaling independent, relating these sequences to
corrections and solutions of the original system by

dx(i)
s = C−1dx(i) and x(i)

s = C−1x(i) .

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



Error Bounds from Extra-Precise Iterative Refinement • 331

These relations are exact (ignoring over and underflow) when R and C are
restricted to powers of the radix and the factorization is column-scaling invari-
ant. Thus we can evaluate our error bound and stopping criteria with the scaled
quantities Cdx(i)

s and Cx(i)
s to determine these quantities for the unscaled sys-

tem. Computation of each scaled norm requires O(n) additional work which is
insignificant compared to O(n2) work required to compute the residual at each
step. The corresponding condition number governing convergence is

κnorm = κ∞(As · C−1) = κ∞(R · A),

which is easy to estimate using standard condition estimation techniques
[Higham 1987, 1988, 1990]. By choosing R to nearly equilibrate the rows of
A, we can minimize κnorm to roughly cond(A)

def= ∥∥|A−1||A|∥∥∞, the Skeel condi-
tion number.

We restrict the equilibration scalings R and C to powers of the radix to
prevent additional errors during factorization. However, in interpreting the
error bounds and termination criteria, we are free to chose any additional
scaling matrix Ĉ. Rounding errors that occur when computing ‖Ĉx(i)

s ‖∞ and
‖Ĉd x(i)

s ‖∞ contribute at most a relative error of εw to each quantity and hence
are negligible. If we could choose Ĉ = diag(xs), then combining the two scal-
ings gives CĈ = diag(x). Then we would have the normwise relative error
‖Ĉ−1x(i)

s − Ĉ−1xs‖∞ = ‖Ĉ−1C−1x(i) − Ĉ−1C−1x‖∞ = ‖(CĈ)−1x(i) − (CĈ)−1x‖∞ =
maxk |x(i)

k − xk||xk|. So the normwise error in Ĉ−1x(i)
s is equal to the component-

wise relative error of the original system. We exploit this relation to evaluate
componentwise error bounds, stopping criteria, and condition number.

Since computing Ĉ requires the solution xs, we can at best approximate it.
An initial solution can be far from the truth, so our final algorithm monitors
the convergence of each component of x(i)

s . Once each component has settled
down to at least 2 bits (i.e., a relative error of 1/4), we use the computed x(i) to
approximate Ĉ = diag(xs). This leads to the componentwise error bound

Bcomp
def= max

{
‖Ĉd x(i)

s ‖∞
1 − ρ̂max

, γ εw

}
≈ max

k

∣∣∣∣∣x(i)
k − xk

xk

∣∣∣∣∣ def= Ecomp, (7)

where ρ̂max = max j≤i
‖Ĉd x( j+1)

s ‖∞
‖Ĉd x( j )

s ‖∞
is the estimate of the convergence rate of Ĉ−1x(i)

s .

The componentwise condition number governing this convergence is given by

κcomp = κ∞(As · Ĉ) = κ∞(R · A · diag(x)).

We note that the same technique may be applied to LAPACK’s current work-
ing precision refinement algorithm in xGERFS. Scaling by Ĉ ≈ diag(x) in
LAPACK’s forward error estimator produces the loose componentwise error
estimate

Bcomp = ‖Ĉ−1 · |A−1| · (|r| + (n + 1)εw(|A||xs| + |b|)) ‖∞. (8)

3. ALGORITHMIC DETAILS

We now describe our ultimate iterative refinement procedure, Algorithm 2.
Its cost amounts to a small number of triangular solves and matrix-vector

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



332 • J. Demmel et al.

–

Algorithm 2: New iterative refinement

Input: An n × n matrix A, an n × 1 vector b
Output: A solution vector x(i) approximating x in Ax = b,

a normwise error bound ≈ ‖x(i) − x‖/‖x‖, and

a componentwise error bound ≈ maxk |x(i)
k − xk |/|xk |

Equilibrate the system: As = R · A · C, bs = R · b
Estimate κs = κ∞(As)
Solve As y (1) = bs using the basic solution method

5 ‖d x(1)‖ = ‖dz (1)‖ = final-relnormx = final-relnormz = ∞
ρmax,x = ρmax,z = 0.0, x-state = working, z-state = unstable, y-scheme = single

7 for i = 1 to ithresh do
// Compute residual in precision εr
if y-scheme = singler (i) = As y (i) − bs

10 else r (i) = As( y (i) + y (i)
t ) − bs, using doubled arithmetic

// Compute correction to y (i)

Solve As dy (i+1) = r (i) using the basic solution method
// Check error-related stopping criteria

Compute ‖x(i)‖ = ‖C y (i)‖, ‖d x(i+1)‖ = ‖Cdy (i+1)‖ and ‖dz (i+1)‖ =
max j |dy (i+1)

j /y (i)
j
|

15 if y-scheme = single and κs · max j | y j |/min j | y j | ≥ 1/γ εw then incr-prec = true
16 Update x-state, ρmax,x with Procedure new-x-state below
17 Update z-state, ρmax,z with Procedure new-z-state below

// Either update may signal incr-prec or may set its final-relnorm
19 if x-state 
= working and z-state 
= working then BREAK
20 if incr-prec then y-scheme = double, incr-prec = false, and y (i)

t = 0
// Update solution
if y-scheme = single then y (i+1) = y (i) − dy (i+1)

else ( y (i+1) + y (i+1)
t ) = ( y (i) + y (i)

t ) − dy (i+1) in doubled arithmetic
24 if x-state = working then final-relnormx =‖d x(i+1)‖ /‖x(i)‖
25 if z-state = working then final-relnormz = ‖dz (i+1)‖

return x(i) = C y (i),
normwise error bound max{ 1

1−ρmax,x
· final-relnormx , max{10,

√
n} · εw}, and

componentwise error bound max{ 1
1−ρmax,z

· final-relnormz , max{10,
√

n} · εw}

multiplications on top of Gaussian elimination. For a dense matrix, the cost is
O(n2) on top of the O(n3) required for the solution without refinement.

The algorithm refers to auxiliary vectors y def= xs, dy def= dxs, z def= Ĉxs and
dz def= Ĉdxs. The actual implementation only stores y and d y to minimize stor-
age; x, dx, z, and dz are not stored explicitly. All norms in this section are the
infinity norm. The state variable x-state ∈ {working, no-progress, converged} tracks
the normwise convergence (convergence of x), while z-state ∈ {unstable, working,

no-progress, converged} tracks the componentwise convergence (convergence of z
to vector of all 1’s). State variable y-scheme ∈ {singledouble} denotes the precision
used for storing y (starting out with single, switching to double if necessary).

The refinement loop exits either from a large iteration count or when both
x and z are no longer in a working state (line 19). The logic is somewhat
complicated by three facts. First, we are simultaneously applying two sets of
stopping criteria, one for the normwise error and one for componentwise error.
Thus the algorithm must decide what to do when one set of criteria decides to

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



Error Bounds from Extra-Precise Iterative Refinement • 333

stop (either because of convergence or failure to converge) before the other set
of criteria; basically we continue if we are making progress in either normwise
or componentwise sense.

Second, the algorithm must decide when to switch to storing the solution y
in doubled working precision. To do this, a second vector yt is used to store the
trailing bits of each floating-point component so that y + yt (with | yt | � | y |)
represents the current solution. Storing y in doubled working precision is more
costly so it is only used when progress stops before reaching full convergence
or when a cheap upper bound on κcomp is very large (line 15).

Third, we must decide when each component of the solution has settled down
enough to test for componentwise relative convergence. We begin considering
componentwise error if no component’s relative change exceeds a threshold
dzthresh, empirically set to 1/4.

We must also take precautions to return reasonable error bounds when some
solution components are exactly zero because of the sparsity structure of A and
b. For example, if b = 0, then the solution x = 0 should be returned with a zero
error bound. See Demmel et al. [2004, Section 7.3] for further discussion.

Procedure new-x-state

Procedure new-z-state

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



334 • J. Demmel et al.

4. RELATED WORK

Mixed precision iterative refinement was first used by Wilkinson [1948] and
Snyder [1955] although Mallock’s work [1933] seems to imply an analog elec-
trical circuit implementing working precision iterative refinement. In Bowdler
et al. [1966], Wilkinson et al. present the Algol programs that perform the LU
factorization, the triangular solutions, and the iterative refinement using εr =
ε2

w. Wilkinson’s LU factorization uses a Crout algorithm, where the inner prod-
ucts are computed to extra precision but in our numerical experiment we use the
same implementation of Gaussian elimination from LAPACK as Algorithm 2.

Wilkinson’s algorithm differs from ours in several ways. (1) There is no ini-
tial equilibration. (2) Parameter ρthresh is fixed to 0.5. (3) The solution vector x is
stored only to working precision. (4) Wilkinson’s algorithm does not attempt to
achieve componentwise accuracy. (5) The original paper’s algorithm [Bowdler
et al. 1966] does not return an error bound, though an error analysis appears in
Wilkinson [1963] and Moler [1967]. In particular, Moler [1967, Equation (11)]
and Higham [2002, Theorem 12.1] provide error bounds including several func-
tions of problem dimension, condition number, and other quantities that are
hard to estimate tightly and efficiently. For the sake of later numerical compar-
isons, we supplement Wilkinson’s algorithm with the error bounds and stopping
criteria described in Section 2. We refer to the combination as Algorithm W.

The use of higher precision in storing x was first presented as an exercise in
Stewart’s book [1973, 206–207]. Stewart suggests that, if x is accumulated in
higher and higher precision, then the residual will get progressively smaller,
and the iteration will eventually converge to any desired accuracy. Kielbasiński
[1981] proposes an algorithm called binary cascade iterative refinement. In this
algorithm, GEPP and the first triangular solve for x(0) are performed in a base
precision. Then during iterative refinement, r (i), x(i+1) and d x(i) are computed
in successively higher precision. Kielbasiński shows that, with a prescribed
accuracy for x, you can choose a maximum precision required to stop the it-
eration. This requires arbitrary precision arithmetic. We are not aware of any
implementation of this algorithm.

A different approach to guaranteeing accuracy of a solution is to use interval
arithmetic [Rump 1983, 1995]. We will not consider interval algorithms further
since the available algorithms do not meet our criterion of costing a small extra
delay on top of the fastest available solution method.

Björck [1990] gives a nice survey of iterative refinement for linear systems
and least-squares problems, including error estimates using working preci-
sion or extra precision in residual computation. Higham’s book [2002] gives
a detailed summary of various iterative refinement schemes which have ap-
peared through history. Higham also provides estimates of the limiting norm-
wise and componentwise error. The estimates are not intended for computation
but rather to provide intuition on iterative refinement’s behavior. The esti-
mates involve quantities like

∥∥|A−1| · |A| · |x|∥∥∞ and require estimating the norm
of A−1. We experimented with approximating these error estimates without us-
ing refinement within the norm estimator (which requires the solution of linear
systems with A and AT ), but they did not provide more accurate error bounds.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



Error Bounds from Extra-Precise Iterative Refinement • 335

Extra precise iterative refinement has not been adopted in such standard
libraries as LINPACK [Dongarra et al. 1979] and later LAPACK [Anderson et al.
1999] mainly because there was no portable way to implement extra precision
when the working precision was already the highest precision supported by
the compiler. A notable exception is the NAG Library [NAG Ltd 2005] whose
F04ATF routine implements extra-precise iterative refinement (but does not
provide any error bound). Current LAPACK expert driver routines xGESVX
only provide the working precision iterative refinement routines (εr = εw). Since
iterative refinement can always ensure backward stability, even in working
precision [Higham 2002, Theorem 12.3], the LAPACK refinement routines use
the componentwise backward error in the stopping criteria. For the sake of later
numerical comparisons, we augment this algorithm as described in Section 2
to compute a componentwise error bound. This combination is Algorithm L.

5. TESTING CONFIGURATION

5.1 Hardware and Software Platforms

The XBLAS library [Li et al. 2002] is a set of routines for dense and banded
BLAS routines, along with their extended and mixed precision versions (see
Chapters 2 and 4 of the BLAS Technical Forum Standard [Forum 2002a,
2002b]). Many routines in the XBLAS library allow higher internal precision to
be used, enabling us to compute more accurate residuals. For example, general
matrix-vector multiply BLAS_sgemv_x performs y ← αAx + β y in single, double,
indigenous, or extra precision.

In addition to the extra precision routines provided by the XBLAS, the
doubled-x scheme in Algorithm 2 requires a new routine which we call gemv2.
This routine takes a matrix A, three vectors x, y , and z, and two scalars α and
β to compute z ← αA(x + y) + βz in single, double, indigenous, or extra preci-
sion. This routine enables us to compute an accurate residual (computed with
precision εr) when the solution is kept in two words x and xt : r = A(x + xt) − b
(see line 10 in Algorithm 2).

This new routine is implemented and tested following the same strategy
used in the XBLAS reference implementation [Li et al. 2002]. Note that this
routine is only used when Algorithm 2 switches to storing the solution x in
doubled working precision. Even without this new routine, our algorithm man-
ages to obtain small errors and error bounds for problems that are not too
ill-conditioned. See Demmel et al. [2004, Section 6.4.1] for how the precision of
x affects results.

We tested our code on two platforms: Sun UltraSPARC 2i running Solaris
and Itanium 2 running Linux. The results were largely similar so we present
results only from the Itanium 2. For more details regarding compilers and BLAS
libraries used, see Demmel et al. [2004, Section 5.5].

5.2 Test Matrix Generation

To thoroughly test our algorithms, we need many test cases with a wide range
of condition numbers, various distribution of singular values, well-scaled and

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



336 • J. Demmel et al.

ill-scaled matrices, matrices with first k columns nearly linearly dependent
(so that ill-conditioning causes the k-th pivot to be tiny), and a wide range of
solution component sizes. We generate test cases as follows.

(1) Randomly pick a condition number κ with log2 κ distributed uniformly in
[0, 26]. This will be the (2-norm) condition number of the matrix before any
scaling is applied. The range chosen will generate both easy and hard prob-
lems (since εw = 2−24) independent of scaling.

(2) We pick a set of singular values σi ’s from one of the following choices:
(a) One large singular value: σ1 = 1, σ2 = · · · = σn = κ−1.
(b) One small singular value: σ1 = σ2 = · · · = σn−1 = 1, σn = κ−1.

(c) Geometrical distribution: σi = κ
− i−1

n−1 for i = 1, 2, . . . , n.
(d) Arithmetic distribution: σi = 1 − i−1

n−1
(1 − κ−1) for i = 1, 2, . . . , n.

(3) Pick k randomly from {3, n/2, n}. Move the largest and the smallest singular
values (picked in step 1) into the first k values, and let 
 be the resulting
diagonal matrix. let

Ã = U


(
V1

V2

)
, (9)

where U , V1, and V2 are random orthogonal matrix with dimensions n, k, and
n−k, respectively. If κ is large, this makes the leading k columns of Ã nearly
linearly dependent, so that LU factorization will most likely encounter a
small pivot at the k-th step. U , V1 and V2 are applied via sequences of random
reflections of dimensions 2 through n, k or n − k, respectively.

(4) Pick τ with (log2 τ )1/2 uniformly distributed in [0,
√

24].1 We generate x̃ so
that τ = maxi |x̃i |

mini |x̃i | . by randomly choosing one of the following distributions:

(a) One large component: x̃1 = 1, x̃2 = · · · = x̃n = τ−1.
(b) One small component: x̃1 = x̃2 = · · · = x̃n−1 = 1, x̃n = τ−1.

(c) Geometrical distribution: x̃i = τ
− i−1

n−1 for i = 1, 2, . . . , n.
(d) Arithmetic distribution: x̃i = 1 − i−1

n−1
(1 − τ−1) for i = 1, 2, . . . , n.

(e) x̃i ’s are randomly chosen within [τ−1, 1] so that log x̃i is uniformly
distributed.

If one of the first four distributions is chosen, we multiply x̃ by a uniform
random number in [0.5, 1.5] to make the largest element unequal to 1 (so
that all components of x̃ have significands with many bits equal to 1).

(5) We then randomly column scale the matrix Ã generated in step (3). We pick
a scaling factor δ such that (− log2 δ)1/2 is uniformly distributed in [0,

√
24].2

Select two columns of Ã at random and multiply by δ to produce the final
input matrix A (rounded to single).

(6) We compute b = Ax̃ using double-double precision but rounded to single at
the end (using the XBLAS routine BLAS_sgemm_x).

1Thus log2 τ ∈ [0, 24] but the distribution is skewed to the left. We chose this distribution as to

not overload our test samples with hard problems (in componentwise sense) with large κcomp =
κ(R A diag(x)) = κ(As diag( y)).
2As in step 4, we chose this distribution as to not overload our test samples with hard problems (in

normwise sense) with large κ(R A) = κ(AsC−1).

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



Error Bounds from Extra-Precise Iterative Refinement • 337

(7) Compute x = A−1b by using double precision GEPP with double-double pre-
cision iterative refinement. This corresponds to Algorithm 2 with IEEE-
754 double precision as working precision (εw = 2−53) and double-double as
residual precision (εr ≈ 2−105). Note that the true solution x thus obtained is
usually not the same as the original x̃ because of rounding errors committed
in step (6). This difference can be quite large if A is ill-conditioned.

Our tests include linear systems generated as just presented of dimensions
5, 10, 100, and 1000. We use 2 × 106 systems for each dimension except 1000.
We test only 2 × 105 systems of dimension 1000 both to save time and because
larger random systems are less likely to show aberrant behavior. Statistics for
the systems of dimension 100 are presented next.

5.3 Test Matrix Statistics

To make sure that we had a good (if not entirely uniform) sampling of easy
and hard problems, various condition numbers were defined and plotted. See
Demmel et al. [2004, Figures 1 and 2] for these plots. We present these condition
numbers in the following.

(1) κs = κ∞(R AC) = κ∞(As) is the condition number of the equilibrated system.
This is a measure of the inherent difficulty of the system (measured in an
appropriate norm). This condition number varies from about 57 to 1.6×1013,
with all but 2169 (0.11%) smaller than 1010.

(2) κc = κ∞(C) = ‖C‖∞ is the maximum column-scaling factor computed during
equilibration. This varies from 1 to 235 ≈ 3.4 × 1010.

(3) κx = κ∞(diag(x)) = maxi |xi |/mini |xi | is the ratio between the largest and smallest
element (in magnitude) of x. This is a measure of how wildly the components
of x vary. κx varies from 1 to about 6.8×1013, with all but 750 (0.04%) of them
less than 1010.

(4) κy = κ∞(diag( y)) = maxi | yi |/mini | yi | is the ratio between the largest and smallest
element (in magnitude) of y = C−1x, the scaled solution of the equilibrated
system As y = bs. κy varies from 1 to approximately 8.5 × 1012, with all but
1266 (0.06%) less than 1010. This is a measure of how wildly the components
of y vary, which gives some idea of the difficulty of getting componentwise
accurate solution. The term κy appears naturally in the condition number
for componentwise problem, since κcomp = κ∞(As diag( y)) ≤ κsκy.

(5) κnorm = κ∞(As · C−1) = κ∞(R · A) is the normwise condition number. It varies
from about 57 to 7.6 × 1017. Using κnorm we divide the test matrices into two
categories:
—Normwise well-conditioned problems. These are matrices with κnorm ≤ 1/γ εw

and perhaps more accurately described as not too ill-conditioned matrices.
These are matrices where we hope to have an accurate solution after
refinement in the normwise sense. Most problems can be expected to fall
in this category in practice. Of the two million test matrices, 821,097
cases fall into this category.

—Normwise ill-conditioned problems. These are the matrices with κnorm > 1/γ εw .
These are so ill-conditioned that we cannot guarantee accurate solutions.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



338 • J. Demmel et al.

Of the two million test matrices, 1,178,903 cases are in this category.
Note that the choice of 1/γ εw (which is approximately 1.67 × 106 for 100 × 100

matrices) as the separation between well and ill-conditioned matrices is
somewhat arbitrary; we could have chosen a more conservative criteria,
such as 1/nεw , or more aggressive criteria, such as 1/εw . Our data in Section 6
indicate that the choice 1/γ εw seems to give reliable solutions without throw-
ing away too many convergent cases. γ = max{10,

√
n} both protects against

condition number underestimates and keeps the bounds attainable.

(6) κcomp = κ(R A diag(x)) = κ(As diag( y)) is the condition number for component-
wise problem. It varies from about 57 to 4.5 × 1015. Note that κcomp depends
not only on the matrix A, but also on the right-hand side vector b (since it
depends on the solution x). As before, we use κcomp to divide the problems
into two categories:
—Componentwise well-conditioned problems. These are problems with κcomp ≤

1/γ εw , and perhaps more accurately described as not too ill-conditioned prob-
lems. These are problems where we hope to have an accurate solution
in componentwise sense. Of the two million test problems, 545,427 cases
fall into this category.

—Componentwise ill-conditioned problems. These are the matrices with κcomp >
1/γ εw . These are so ill-conditioned that we cannot guarantee accurate so-
lutions. Of the two million test problems, 1,454,573 cases fall into this
category. Note that if any component of the solution is zero, then κcomp

becomes infinite.

For the basic solution method, we used LAPACK’s sgetrf (GEPP, P As = LU )
and sgetrs (triangular solve) routines. The pivot growth factor

maxi, j |U (i, j )|
maxi, j |As(i, j )| never

exceeded 72. This implies that we have obtained LU factors with small normwise
backward error. The distribution of the pivot growth factors [Demmel et al.
2004, Figure 3] shows a smooth decrease in likelihood with increasing pivot
growth. This is consistent with Trefethen and Schreiber [1990] which suggests
that, for various random matrix distributions, the average pivot growth factor
should be about n2/3 ≈ 22.

5.4 Accuracy of Single Precision Condition Numbers

All the condition numbers in Section 5.3 were estimated in double precision
which we regard as truth. Since Algorithm 2 will only estimate the condi-
tion number in working (single) precision, we must confirm whether the single
precision condition number is a reliable indicator for detecting ill-conditioned
matrices.

The 2D histograms of the normwise condition number κnorm computed in sin-
gle precision and double precision, are shown in Figure 1(a). Since these 2D
histograms appear throughout this article, we explain this plot in some detail.
In this 2D histogram, each shaded square at coordinate (x, y) indicates the
existence of matrices that have single precision κnorm in the range [10x , 10x + 1/4 )

and double precision κnorm in the range [10 y , 10 y + 1/4 ). The shade of each square
indicates the number of matrices that fall in that square, indicated by the

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



Error Bounds from Extra-Precise Iterative Refinement • 339

Fig. 1. Accuracy of computed condition numbers: single precision vs. double precision. The single

precision κcomp are those computed by Algorithm 2 with ρthresh = 0.5.

grayscale bar to the right of the plot. Dark squares indicate a large popula-
tion, while light squares indicate a very small population. A logarithmic scale
is used in the grayscale bar so a lighter shade indicates a much smaller pop-
ulation than a darker shade. For example, the light squares near the top and
right edges contains only a handful of matrices (less than 5, usually just 1),
while the darker squares contains approximately 103 to 104 samples. These
histograms can be interpreted as a test matrix population density at each
coordinate.

The horizontal and vertical lines are both located at 1/γ εw , separating well-
conditioned from ill-conditioned matrices. Along with the diagonal line where
both single and double precision values of κnorm are equal, these lines divide the
plot into six regions, and the percentage of samples in each region is displayed
in bold numbers in the plot.

If the single and double precision values of κnorm were identical, the only
shaded squares would be along the diagonal. When κnorm ≤ 1/γ εw , the squares
are all close to the diagonal, meaning that the single precision κnorm is close to
the double precision κnorm (which we assume is the true value). Only when either
condition number exceeds 1/γ εw can they differ significantly as indicated by the
spread of shaded squares in the upper right. This tells us that we can trust
the single precision κnorm to separate the not-too-ill-conditioned matrices from
the very ill-conditioned matrices.

Figure 1(b) tells the same story for the componentwise condition
number κcomp.

6. NUMERICAL RESULTS

We present the numerical results for our new algorithm, Algorithm 2, and
compare it to Algorithm W (Wilkinson’s algorithm augmented with our error
bound formulas) and Algorithm L (the current LAPACK algorithm augmented
with our componentwise error bound (8). The data is for two million 100 × 100

test matrices described in Section 5. Similar results were obtained on two

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



340 • J. Demmel et al.

Fig. 2. Normwise error vs. κnorm.

million each of 5 × 5 and 10 × 10 matrices and also two hundred thousand
1000 × 1000 matrices.3

The normwise and componentwise true errors are denoted by Enorm =‖x−x̂‖∞

/‖x‖∞ and Ecomp = max|xi−x̂i |
i /|xi |, respectively, where x is the true solution, and x̂

is the solution computed by the algorithm. Similarly, the normwise and comp-
onentwise error bounds (computed by the algorithms) are denoted Bnorm and
Bcomp, respectively. Sections 6.1 and 6.2 present normwise and componentwise
results, respectively. We set ρthresh = 0.5 in Algorithms 2, and W. Parameter
ithresh (maximum number of iterations allowed) is set very large so that we can
evaluate the number of steps required to converge.

Here we define notation common to Sections 6.1 and 6.2. For example, for
Enorm we distinguish three cases.

(1) Strong Convergence. Enorm ≤ 2γ εw = 2 max{10,
√

n}·εw. This is the most desirable
case where the true error is of order εw. The lower solid horizontal line in
Figure 2 (and in other analogous figures) is at Enorm = 2γ εw.

(2) Weak Convergence. 2γ εw < Enorm ≤ √
εw. We could not get strong convergence,

but we did get at least half of the digits correctly. The upper solid horizontal
line in Figure 2 (and in other analogous figures) is at Enorm = √

εw.

(3) No Convergence. Enorm >
√

εw. We could not get a meaningful result.

In addition, we often indicate the value of εw in figures as well: the dashed
horizontal line in Figure 2 (and in other analogous figures) is at Enorm = εw.
Analogous classifications can also be made for Bnorm, Ecomp, and Bcomp, and sepa-
rating vertical or horizontal lines appear in various figures.

In the final version of the code, we set the error bound to 1 whenever its com-
puted value exceeds

√
εw, in order to indicate that it did not converge according

to our criterion. But in this section, we report the computed error bounds with-
out setting them to 1, in order to better understand their behavior.

3A full set of color plots for all algorithms and all 6.2 M test matrices can be seen at http://www.

cs.berkeley.edu/~demmel/itref-data/.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



Error Bounds from Extra-Precise Iterative Refinement • 341

Later in Section 6.4, we will vary the parameters ρthresh and ithresh to study
how the behavior of Algorithm 2 changes. In particular, we will recommend
cautious and aggressive values for ithresh and ρthresh. The cautious settings, which
we recommend as the default, yield maximally reliable error bounds for well-
conditioned problems, and cause the code to report convergence failure on the
hardest problems. The aggressive settings will lead to more iterations on the
hardest problems and usually, but not always, give error bounds within a factor
of 100 of the true error.

6.1 Normwise Error Estimate

We start by looking at the results in terms of normwise true error Enorm and
error bound Bnorm. The most important conclusion we can draw from this section
is that both Algorithm 2 and Algorithm W deliver a tiny error (Enorm strongly
converged) and a slightly larger error bound (Bnorm also strongly converged)
as long as κnorm ≤ 1/γ εw , that is, for all well-conditioned matrices in our test
set. This is the best possible behavior we could expect. Furthermore, even for
more ill-conditioned problems (κnorm > 1/γ εw ), both algorithms still do very well;
Algorithm 2 and W achieve strong convergence in both Enorm and Bnorm in 96%
and 92% of the cases, respectively.

The two plots in Figure 2 show the 2D histograms of the test problems plotted
according to their true normwise error Enorm and condition number κnorm for
Algorithms 2 and L. The plot for Algorithm W is nearly identical to the plot for
Algorithm 2 and so is omitted (see Demmel et al. [2004, Figure 6b]). The vertical
solid line is at κnorm = 1/γ εw , and separates the well-conditioned problems from
the ill-conditioned problems. The solid horizontal lines are at

√
εw and 2γ εw,

separating the regions of strong and weak convergence of Enorm. The dotted
horizontal line is at εw. If any problem falls outside the coordinate range, then
it is placed at the edge; for example, the band at the very top of Figure 2 includes
all the cases where Enorm ≥ 10.

Figure 2(a) shows that for well-conditioned problems (κnorm < 1/γ εw ), Algo-
rithm 2 (and Algorithm W) attain the best possible result: strong conver-
gence of Enorm in all cases (821,097 out of 2 million). Even for harder problems
(κnorm ≥ 1/γ εw ), Algorithm 2 (and Algorithm W) still do very well, with Algorithm 2
exhibiting strong convergence of Enorm in 96% of cases and Algorithm W exhibit-
ing strong convergence of Enorm in 93% of cases.

In contrast, with Algorithm L (Figure 2(b)), the error grows roughly propor-
tional to the condition number as shown by the dark diagonal squares in the
figure. This is consistent with the early error analysis on the working precision
iterative refinement [Higham 2002, Theorem 12.2]. Algorithm L consistently
gives much larger true errors and error bounds than either of the other two
algorithms even when it converges.

But, of course, a small error Enorm is not helpful if the algorithm cannot
recognize it by computing a small error bound Bnorm. We now compare Bnorm

to Enorm to see how well our error estimate approximates the true error. For
821,097 well-conditioned problems, both Algorithms 2 and W converged to a
true error of at most 3 · 10−7 and returned an error bound of γ εw ≈ 6 · 10−7, just
slightly larger.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



342 • J. Demmel et al.

Fig. 3. Normwise error vs. bound (ill-conditioned cases).

The 2D histograms in Figure 3 show what happens for the more ill-
conditioned cases (the same plot for well-conditioned cases was omitted since
all the cases would fall under the bottom left square delineated by the solid
lines). The leftmost vertical solid lines are at Enorm = 2γ εw (corresponding to the
threshold for strong convergence) and the rightmost vertical solid lines are at
Enorm = √

εw (corresponding to the threshold for weak convergence). Horizon-
tal lines are at Bnorm equal to the same values. The diagonal line marks where
Bnorm is equal to Enorm; matrices below the diagonal correspond to underestimates
(Bnorm < Enorm), and matrices above the diagonal correspond to overestimates
(Bnorm > Enorm). The vertical and horizontal dotted lines correspond to Enorm = εw

and Bnorm = εw, respectively.
From this plot, we see that even for very ill-conditioned problems, algorithms

yield strong convergence in both Enorm and Bnorm in most cases. However our Al-
gorithm 2 seems to give more cases near the diagonal (where Enorm = Bnorm),
leading to fewer overestimates and underestimates. Both algorithms fail to
have Bnorm converge in about the same number of cases, 3.4% and 3.6%, repec-
tively. But of the remainder (those where both algorithms report at least weak
convergence), Algorithm 2 fails to get strong convergence in both Enorm and Bnorm

in only 0.16% of the cases (1,800 out of 1,138,444 cases), whereas Algorithm W
fails to get strong convergence in both Enorm and Bnorm over 27 times as often,
in 4.3% of the cases (4,8802 out of 1,136,482). In other words, there are over
27 times more cases where Algorithm W is confused than Algorithm 2 (48,802
versus 1,800).

Finally, Figure 4 shows the 2D histogram of the ratio Bnorm/Enorm plotted against
κnorm. These plots show how much Bnorm overestimates Enorm (ratio > 1) or un-
derestimates Enorm (ratio < 1). We omit cases where Bnorm does not converge,
and also cases where both Enorm and Bnorm converged strongly (the ideal case),
since we are only interested in analyzing cases where the algorithm claims to
converge to a solution but either Enorm or Bnorm (or both) are much larger than
εw. Since Algorithms 2 and W converge strongly for both Enorm and Bnorm for all

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



Error Bounds from Extra-Precise Iterative Refinement • 343

Fig. 4. Overestimation and underestimation ratio (Bnorm/Enorm ) vs. κnorm. Cases with strong con-

vergence (in both Enorm and Bnorm) and cases with no convergence (Bnorm >
√

εw) are omitted for

clarity.

well-conditioned cases, no data points appear to the left of the vertical line. We
are most concerned about underestimates where the error bound is substan-
tially smaller than the true error. We see that Algorithm 2 has somewhat fewer
underestimates than Algorithm W (defined as Enorm > 10Bnorm), 7 vs. 243, and
rather fewer overestimates (10Enorm < Bnorm), 25 vs. 2,130. Analogous figures for
Algorithm L (see Demmel et al. [2004, Figures 6c and 8c]) indicate that, while
Algorithm L never underestimates the error, it almost always overestimates
the error by two or three orders of magnitude. Thus the error bound returned
by Algorithm L is loose, albeit safe.

6.2 Componentwise Error Estimate

We now look at the results in terms of componentwise true error Ecomp and error
bound Bcomp. Algorithm W does not compute a componentwise error bound, nor
was it designed to make Ecomp small, so only its true error Ecomp is analyzed in
this section.

The most important conclusion we can draw from this section is that Algo-
rithm 2 delivers a tiny componentwise error (Ecomp strongly converged) and a
slightly larger error bound (Bcomp also strongly converged) as long as κcomp < 1/γ εw ,
that is, for all componentwise well-conditioned matrices. This is the best pos-
sible behavior we could expect. Furthermore, even for harder problems where
κcomp ≥ 1/γ εw , Algorithm 2 also does well, getting strong convergence in both Ecomp

and Bcomp in 94% of the cases.
The two plots in Figure 5 show the 2D histograms of the test problems plotted

according to their componentwise error Ecomp and condition number κcomp for the
Algorithms 2 and W. These graphs may be interpreted similarly to those in
Figure 2 which were described in the previous section. As already mentioned,
Figure 5 shows that, for well-conditioned problems, Algorithm 2 attains strong
convergence of Ecomp in all cases. Algorithm W, which was not designed to get
small componentwise errors, does slightly worse with strong convergence in

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



344 • J. Demmel et al.

Fig. 5. Componentwise error vs. κcomp.

99% of the cases and weak or no convergence in the other 1%, including a few
truly well-conditioned problems. For harder problems (those with κcomp ≥ 1/γ εw ),
Algorithm 2 still does very well, exhibiting strong convergence of Ecomp in 95% of
cases. Algorithm W does much worse, exhibiting strong convergence of Ecomp in
only 67% of cases and failing to converge at all more than twice as frequently. In
contrast, with Algorithm L the error grows roughly proportional to the condition
number, (see Demmel et al. [2004, Figure 9c]). Strong convergence of Ecomp is
very rare, only 7.3% of well-conditioned cases and not at all for ill-conditioned
cases.

As in the last section, a small error Ecomp is helpful only if the algorithm also
produces a comparably small error bound Bcomp. For well-conditioned problems,
Algorithm 2 always obtains a small componentwise error bound around γ εw

and true error slightly smaller. Thus we can trust Algorithm 2 to deliver a tiny
error and a slightly larger error bound as long as κcomp < 1/γ εw .

The 2D histogram in Figure 6, whose interpretation is the same as that
of Figure 3 in the previous section, shows what happens for the more ill-
conditioned cases. Most (94%) still yield strong convergence in both Ecomp and
Bcomp.

Finally, Figure 7 shows the 2D histogram of the ratio Bcomp/Ecomp plotted against
κcomp. Again, this histogram may be interpreted similarly to those in Figure 2.
However, in contrast to the normwise case, we see there are more cases where
Algorithm 2 attains neither strong convergence (in both Bcomp and Ecomp) nor
convergence failure in Bcomp: 45,100 cases versus 1,800 (both out of 2 million, so
rather few either way). There are also more cases of underestimates where the
ratio is less than 1/10, 273 vs. 7.

6.3 Iteration Counts

Table I shows the statistics on the number of iterations required by the al-
gorithms. The parameter ithresh has been set very large so that we can evalu-
ate the number of steps required to converge. The data is broken down into
well-conditioned problems versus ill-conditioned problems and by the number

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



Error Bounds from Extra-Precise Iterative Refinement • 345

Fig. 6. Componentwise error vs. bound for Algorithm 2, for ill-conditioned cases (κcomp ≥ 1/γ εw ).

Fig. 7. Ratio Bcomp/Ecomp vs. κcomp for Algorithm 2. Cases with strong convergence (in both Ecomp

and Bcomp) and cases with no convergence (Bcomp >
√

εw) are omitted for clarity.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



346 • J. Demmel et al.

Table I. Statistics (Max, Mean, and Median) on the Number of Iterations Required by Each

Algorithm (Algorithms W and L do not use doubled-x scheme so only totals are given)

Single x Doubled x Total Doubled-x
Max Mean Med Max Mean Med Max Mean Med Incidence

Alg. 2 (any ρthresh) 3 1.5 1 3 0.7 1 4 2.1 2 55%

Alg. W (Wilkinson) 4 2.1 2

Alg. L (LAPACK) 4 2.6 3

(a) Well-conditioned (κcomp ≤1 /γ εw )

Single x Doubled x Total Doubled-x
Max Mean Med Max Mean Med Max Mean Med Incidence

Alg. 2 (ρthresh = 0.5) 1 1 1 32 3.6 3 33 4.6 4 100%

Alg. 2 (ρthresh = 0.8) 1 1 1 89 4.0 3 90 5.0 4 100%

Alg. 2 (ρthresh = 0.9) 1 1 1 175 4.1 3 176 5.1 4 100%

Alg. 2 (ρthresh = 0.95) 1 1 1 330 4.3 3 331 5.3 4 100%

Alg. W (Wilkinson) 29 4.0 3

Alg. L (LAPACK) 6 2.4 2

(b) Ill-conditioned (κcomp > 1/γ εw )

of iterations where the solution x is represented in working (single) precision
versus doubled precision. The behavior of Algorithm 2 for different values of
ρthresh is also shown and will be discussed in Section 6.4.

For well-conditioned problems, both Algorithms 2 (for any value of ρthresh)
and W required at most 4 iterations with a median of 2. Doubled-x iteration
was triggered in 55% of cases. On average, 2/3 of the iterations are in single-x
and 1/3 in the more expensive doubled-x. Algorithm L is limited to at most 6
iterations in all cases.

For ill-conditioned problems, the median number of iterations used by Algo-
rithm 2 with ρthresh = 0.5 rises to 4 which is still quite modest but, in the worst
case, we do 33 iterations. Doubled-x iteration is always triggered right after the
first iteration.

6.4 Effects of Various Parameters in Algorithm 2

Compared to Algorithm W, Algorithm 2 incorporates several new algorithmic
ingredients and adjustable parameters. We note that different parameter set-
tings in Algorithm 2 usually do not make any difference for the well-conditioned
problems since all of them quickly converge strongly. However, they can make
noticeable differences for the very ill-conditioned problems. In this section, we
examine the effect of each individual parameter setting, using these difficult
problems.

6.4.1 Effect of Doubled-x Iteration. For ill-scaled systems, the doubled-x
iteration is very useful in order to get accurate results for the small components
in the solution. To measure its benefit, we ran Algorithm 2 with and without
the doubled-x iteration for the two million test cases. See Demmel et al. [2004,
Figure 13] for 2D histograms of Enorm versus Bnorm and Ecomp versus Bcomp with
and without doubled-x iteration.

To summarize, with doubled-x iteration, Algorithm 2 obtains 3% more
cases of strong-strong normwise convergence as well as 13% more cases of

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



Error Bounds from Extra-Precise Iterative Refinement • 347

Table II. Number of Overestimates and Underestimates of the Error Returned by

Various Algorithms (Cases with strong convergence in both true error and error bound

are not included in the underestimates and overestimates. The number of cases with no

convergence is also listed. The category “> 10×” includes the cases under “> 100×”)

Underestimates Overestimates

> 100× > 10× > 100× > 10× No Convergence

Alg. 2 with ρthresh = 0.5 0 7 1 25 40459

Alg. 2 with ρthresh = 0.8 0 30 3 151 25452

Alg. 2 with ρthresh = 0.9 0 34 3 505 22755

Alg. 2 with ρthresh = 0.95 0 33 14 843 21673

Alg. W (Wilkinson) 6 243 35 2130 42421

Alg. L (LAPACK) 0 0 56494 57262 1942738

(a) Normwise

Underestimates Overestimates

> 100× > 10× > 100× > 10× No convergence

Alg. 2 with ρthresh = 0.5 2 273 13 1627 41939

Alg. 2 with ρthresh = 0.8 5 463 36 3842 26847

Alg. 2 with ρthresh = 0.9 6 502 67 7436 24250

Alg. 2 with ρthresh = 0.95 8 499 140 11094 23297

(b) Componentwise

strong-strong componentwise convergence. The number of cases where the
code reports normwise nonconvergence (Bnorm >

√
εw) decreases by 179; cases

of componentwise nonconvergence (Bcomp >
√

εw) decreases by 5,581. Doubled-x
iteration also decreases the worst normwise underestimation ratio from 1,010
to 230, and the worst componentwise underestimation ratio from 6,300 to
320.

6.4.2 Effect of ρthresh. In Algorithm 2, ρthresh is used to determine when to
stop the iteration due to lack of progress. A larger ρthresh allows the algorithm to
make progress more slowly and take more steps to converge which is useful for
very ill-conditioned problems. However, a larger ρthresh may cause more severe
overestimates (because of the 1 − ρthresh factor in the denominator of the error
bound) and underestimates (since we are being more aggressive to pursue a
small dx).

Table I displays the statistics of the total iteration counts for various algo-
rithms. For well-conditioned problems, Algorithm 2 (with various ρthresh) and
Algorithm W both require about the same number of steps (maximum of 4 with
median of 2). For ill-conditioned problems, Algorithm W requires slightly fewer
iterations than Algorithm 2 (at the cost of not converging in some cases). For
Algorithm 2, it is clear that a larger ρthresh may potentially need a much larger
number of iterations. However, a large number of iterations is required only
when the problem is extremely hard and happens relatively rarely (hence the
median stays at 4).

Table II gives the number of overestimates and underestimates of the error
bounds returned by Algorithm 2 as a function of ρthresh: The number of uncon-
verged cases drops by nearly half as ρthresh increases from 0.5 to 0.95, at the cost
of more severe overestimates and underestimates.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



348 • J. Demmel et al.

6.5 Cautious versus Aggressive Parameter Settings

By setting ρthresh and ithresh smaller or larger, Algorithm 2 can be made cautious
or aggressive. For the cautious setting, we choose ρthresh = 0.5 and ithresh = 10.
For the aggressive setting, we choose ρthresh = 0.9 and ithresh = 100. The cautious
parameter setting works reliably on all well-conditioned problems and so we
use it as the default setting in the algorithm. The cautious setting also works
for a large fraction of the most ill-conditioned problems, achieving strong norm-
wise convergence in 96% of cases and strong componentwise convergence in 94%

of cases. Failure to converge is indicated by returning Bnorm = 1 and/or Bcomp = 1,
meaning no accuracy is guaranteed. We expect that most users would prefer
this cautious mode as the default. On the other hand, the aggressive parameter
setting could be used for very ill-conditioned problems at the slightly higher risk
of slow convergence or extreme over/underestimates of error.

6.6 Limitations of Refinement and our Bounds

In Demmel et al. [2004, Section 7], we explore selected ill-conditioned examples
in detail to see how Algorithm 2 behaves when it severely overestimates or un-
derestimates the true error. Briefly, underestimates occur when the algorithm
believes it has converged (due to small dx), but to a slightly wrong answer.
Overestimates occur either because of early termination or a true error that is
accidentally much smaller than ‖dx‖ would indicate.

We also tried certain specially constructed difficult problems besides the ones
described in Section 5. When faced with Rump’s outrageously ill-conditioned
matrices [Rump 1991] and random x, our algorithm either successfully solved
the systems (O(εw) errors and bounds) or correctly reported failure to converge.

With matrices with maximal pivot growth (such as the one in Higham [2002,
166]), our algorithm gives a correct solution up to about n = 53; for larger n,
we fail to obtain a good solution. Even though the true condition numbers of
these matrices are not huge, pivot growth during the factorization stage causes
the LU factors to be highly inaccurate, and, as a result, our condition estimator
overestimate, the condition number. This leads our algorithm to report that
these matrices are too ill-conditioned, at the same time failing to find a good
solution. However, for moderate pivot growth, our algorithm manages to clean
up the solution to full accuracy.

We also tried exactly singular matrices with slightly inconsistent right-
hand sides, but where LU factorization still succeeded because of roundoff.
Algorithm 2 computed error bounds that were fairly close to 1, that is, ex-
ceeded our reliability threshold of

√
εw by a large margin and so correctly in-

dicated that the results were unreliable. We applied our algorithm to prob-
lems with exactly zero solution components. When the zeros were structural
zeros, that is, a result of A−1 and b having appropriate zero structure, these
zero components were computed exactly. These exact zero components did not
impact the error bounds. When the zeros occurred from numerical cancella-
tion, the code correctly returned an effectively infinite componentwise error
bound.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



Error Bounds from Extra-Precise Iterative Refinement • 349

7. CONCLUSIONS AND FUTURE WORK

We have presented a new variation of the extra-precise iterative refinement
algorithm for the solution of linear equations. With negligible extra work, we
return a bound on the maximum relative error in any solution component as
well as the normwise error bound. We prove this by means of an error analy-
sis exploiting column-scaling invariance of the algorithm. With the availability
of the extended precision BLAS standard, the algorithm can be implemented
portably. Based on a large number of numerical experiments, we show that,
for all but the worst conditioned problems (for those with condition number
less than 1/γ εw ), the algorithm converges quickly, and the corresponding error
bounds (normwise and componentwise) are reliable. The algorithm also con-
verges for a large fraction of the extremely ill-conditioned problems, although
the error bounds occasionally underestimate the true error. Some difficulties
with the badly scaled problems (i.e., with greatly varying solution components)
can be overcome by using extra precision to store the solution x (the doubled-x
iteration).

Systems like MATLAB [MathWorks, Inc.] that solve Ax = b return a warning
when A is nearly singular, based on a condition estimator. This estimator, like
Algorithm 2, costs very little beyond the triangular factorization for medium to
large n. Therefore, these systems could use iterative refinement as a default,
issuing a warning only if the system is not guaranteed to be fully accurate
because κnorm (or κcomp) is too large.

Our algorithm applies to all the other LAPACK [Anderson et al. 1999] and
ScaLAPACK [Blackford et al. 1997] linear system solvers. Additional structure
in symmetric and banded systems may allow better error estimates or earlier
termination. The error analysis in Section 2 needs to be extended to these
systems. Algorithm 2 can also be used to improve numerical stability of the
parallel sparse direct solver, SuperLU DIST [Li and Demmel 2003], with static
pivoting instead of partial pivoting.

The majority of computers contain processors with Intel’s IA32 architec-
ture [Intel Corporation 2004], and support 80-bit floating-point arithmetic in
hardware (although this may be supplanted in the future by 64-bit arithmetic
in SSE2). Future work will extend Algorithm 2 and its error analysis to use
this kind of extended precision.

Extra-precise iterative refinement may also be applied to least squares prob-
lems, eigenvalue problems, and any other method of numerical linear algebra.
Ultimately, the goal should be to achieve a guaranteed tiny error for all algo-
rithms in LAPACK, as long as an appropriate condition number is sufficiently
less than 1/εw, and to do this for a small cost beyond the most straightforward
solution (e.g., O(n2) extra on top of O(n3)). This will not necessarily be possi-
ble in all cases (attaining e.g., small extra cost for narrow band problems) but
this level of accuracy should be made available for the standard problems of
numerical linear algebra.

Given our empirical evidence that our error bounds are guaranteed to be
small when the condition number is suitably bounded, it is reasonable to ask
whether it is possible to prove that this is always true for an additional cost of

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



350 • J. Demmel et al.

only O(n2). Here is an obstacle: in Demmel et al. [2001], it was essentially shown
that any condition estimator that costs asymptotically less than linear equation
solving must have counterexamples, that is, matrices for which it badly mis-
estimates the condition number. This means that any approach to guaranteed
high accuracy that depends on condition estimation must have a cost propor-
tional to linear equation solving itself. The results in Demmel et al. [2001] are
not for floating-point computation and do not detract from the practical util-
ity of our results but show that mathematically guaranteed error bounds at
asymptotically negligible cost may not exist.

REFERENCES

ANDERSON, E., BAI, Z., BISCHOF, C., BLACKFORD, S., DEMMEL, J., DONGARRA, J., DU CROZ, J., GREENBAUM,

A., HAMMARLING, S., MCKENNEY, A., AND SORENSEN, D. 1999. LAPACK Users’ Guide, Release 3.0.

SIAM, Philadelphia, PA. 407 pages.

ANSI/IEEE 1985. IEEE Standard for Binary Floating Point Arithmetic, Std 754-1985.

ANSI/IEEE, New York, NY.

BJÖRCK, Å. 1990. Iterative refinement and reliable computing. In Reliable Numerical Computa-
tion, M. Cox and S. Hammarling, Eds. Oxford University Press, 249–266.

BLACKFORD, L. S., CHOI, J., CLEARY, A., D’AZEVEDO, E., DEMMEL, J., DHILLON, I., DONGARRA, J., HAMMAR-

LING, S., HENRY, G., PETITET, A., STANLEY, K., WALKER, D., AND WHALEY, R. C. 1997. ScaLAPACK
Users’ Guide. SIAM, Philadelphia, PA. 325 pages.

BOWDLER, H., MARTIN, R., PETERS, G., AND WILKINSON, J. 1966. Handbook series linear algebra:

Solution of real and complex systems of linear equations. Numerische Mathematik 8, 217–234.

DEMMEL, J., DIAMENT, B., AND MALAJOVICH, G. 2001. On the complexity of computing error bounds.

Found. Comp. Math. 1, 101–125.

DEMMEL, J., HIDA, Y., KAHAN, W., LI, X. S., MUKHERJEE, S., AND RIEDY, E. J. 2004. Error bounds from

extra precise iterative refinement. Tech. Rep. UCB/CSD-04/1344, Computer Science Division,

University of California at Berkeley. (Also LAPACK Working Note 165).

DONGARRA, J., BUNCH, J. R., MOLER, C. B., AND STEWART, G. W. 1979. LINPACK Users’ Guide. SIAM,

Philadelphia, PA.

FORUM, B. T. 2002a. Basic linear algebra subprograms technical (BLAST) forum standard I. Int.
J. High Perform. Comput. Applic. 16, 1–111.

FORUM, B. T. 2002b. Basic linear algebra subprograms technical (BLAST) forum standard II. Int.
J. High Perform. Comput. Applic. 16, 115–199.

HIGHAM, N. J. 1987. A survey of condition number estimation for triangular matrices. SIAM
Rev. 29, 575–596.

HIGHAM, N. J. 1988. FORTRAN codes for estimating the one-norm of a real or complex matrix,

with applications to condition estimation. ACM Trans. Math. Soft. 14, 4, 381–396.

HIGHAM, N. J. 1990. Experience with a matrix norm estimator. SIAM J. Sci. Stat. Comput. 11,

804–809.

HIGHAM, N. J. 2002. Accuracy and Stability of Numerical Algorithms 2nd Ed. SIAM, Philadelphia,

PA.

Intel Corporation 2004. IA-32 IntelTM Architecture Software Developer’s Manual, Volume 1: Basic

Architecture. Intel Corporation.

KIELBASIŃSKI, A. 1981. Iterative refinement for linear systems in variable-precision arithmetic.

BIT 21, 97–103.

LI, X. S. AND DEMMEL, J. W. 2003. SuperLU DIST: A scalable distributed-memory sparse

direct solver for unsymmetric linear systems. ACM Trans. Math. Soft. 29 2 (June) 110–

140.

LI, X. S., DEMMEL, J. W., BAILEY, D. H., HENRY, G., HIDA, Y., ISKANDAR, J., KAHAN, W., KANG, S. Y.,

KAPUR, A., MARTIN, M. C., THOMPSON, B. J., TUNG, T., AND YOO, D. J. 2002. Design, implemen-

tation and testing of extended and mixed precision BLAS. ACM Trans. Math. Soft. 28, 2, 152–

205.

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.



Error Bounds from Extra-Precise Iterative Refinement • 351

MALLOCK, R. R. M. 1933. An electrical calculating machine. Proceedings of the Royal Society of
London. Series A, Containing Papers of a Mathematical and Physical Character 140, 841 (May)

457–483.

MATHWORKS, INC. MatlabTM

MOLER, C. B. 1967. Iterative refinement in floating-point. J. ACM 14, 2, 316–321.

NAG Ltd 2005. NAG Fortran Library Manual, Mark 21. NAG Ltd, Oxford, UK.

RUMP, S. 1983. Solving algebraic problems with high accuracy. In A New Approach to Scientific
Computation, U. Kulisch and W. Miranker, Eds. Academic Press, 51–120.

RUMP, S. 1995. Verified computation of the solution of large sparse linear systems. Zeitschrift für
Angewandte Mathematik und Mechanik (ZAMM) 75, S439–S442.

RUMP, S. M. 1991. A class of arbitrarily ill conditioned floating-point matrices. SIAM J. Matrix
Analy. Appl. 12, 4 (Oct.) 645–653.

SNYDER, J. N. 1955. On the improvement of the solutions to a set of simultaneous linear equations

using the ILLIAC. J. Math. Tables other Aids Comput. 9, 52, 177–184.

STEWART, G. W. 1973. Introduction to Matrix Computations. Academic Press, New York, NY.

STRASSEN, V. 1969. Gaussian Elimination is not optimal. Numer. Math. 13, 354–356.

TREFETHEN, L. AND SCHREIBER, R. 1990. Average-case stability of Gaussian elimination. SIAM J.
Matrix Analy. Appl. 11, 3, 335–360.

WILKINSON, J. H. 1948. Progress report on the Automatic Computing Engine. Report MA/17/1024,

Mathematics Division, Department of Scientific and Industrial Research, National Physical Lab-

oratory, (April) Teddington, UK.

WILKINSON, J. H. 1963. Rounding Errors in Algebraic Processes. Notes on Applied Science No.

32, Her Majesty’s Stationery Office, London, UK. (Also published by Prentice-Hall, Englewood

Cliffs, NJ, Reprinted by Dover, New York, 1994).

Received March 2005; revised September 2005; accepted September 2005

ACM Transactions on Mathematical Software, Vol. 32, No. 2, June 2006.


