IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Evaluation of SuperLU on multicore architectures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 J. Phys.: Conf. Ser. 125 012079
(http://iopscience.iop.org/1742-6596/125/1/012079)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 131.243.240.156
The article was downloaded on 09/12/2010 at 18:36

Please note that terms and conditions apply.

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/125/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

SciDAC 2008 IOP Publishing
Journal of Physics: Conference Series 125 (2008) 012079 doi:10.1088/1742-6596/125/1/012079

Evaluation of SuperLU on multicore architectures

Xiaoye S. Li
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

E-mail: xs1i@lbl.gov

Abstract. The Chip Multiprocessor (CMP) will be the basic building block for computer
systems ranging from laptops to supercomputers. New software developments at all levels are
needed to fully utilize these systems. In this work, we evaluate performance of different high-
performance sparse LU factorization and triangular solution algorithms on several representative
multicore machines. We included both Pthreads and MPI implementations in this study and
found that the Pthreads implementation consistently delivers good performance and that a
left-looking algorithm is usually superior.

1. Introduction

The Chip Multiprocessor (CMP) systems will be the basic building blocks for computers ranging
from laptops to supercomputers. Compared to the superscalar microprocessors exploiting high
degree of instruction level parallelism, the CMP designs represent a paradigm shift that strikes
better trade-offs between performance (parallelism) and energy efficiency. In theory, the CMPs
can often be programmed the same way as the conventional SMPs, but the CMPs have lower
memory bandwidth and abundance of fine-grained parallelism. Given the diversity of CMP
designs, it is necessary, albeit difficult, to develop new software strategies at the system level as
well as the application level in order to fully utilize the hardware resources.

In this paper, we study the factorization and triangular solution kernels in the sparse
direct solver SuperLU [1] on two leading CMP systems. Our goal of this study is twofold.
First, we would like to evaluate performance of the existing implementations on the new CMP
architectures, and secondly, we would like to identify the inefficiencies in the algorithms and/or
implementations and the ways to improve them for the new architectures.

2. Experimental machines

Our testing systems include an Intel Colvertown, a Sun VictoriaFalls, and an IBM Power5. The
last one contains a conventional SMP node. Table 1 summarizes the key architectural features
of the three systems used in this study. The sources come from [2, 3, 4].

The Intel Colvertown consists of two sockets, each with two pairs of dual-core Xeon chips
(Core2Duo), with total eight processors (Dell PowerEdge 1950 dual-socket). Each core runs at
2.33 GHz with a peak performance of 9.3 Gflops (4 flops per cycle) and has a private 32 KB L1
cache. Each chip (two cores) share a 4 MB L2 cache. Each socket has access to a Front Side Bus
(FSB) delivering 10.6 GB/s. The two independent FSBs are connected to the memory controller
which interfaces to the DRAM channels, delivering 21.3 GB/s read memory bandwidth and 10.6
GB/s write bandwidth.

The dual-chip Sun VictoriaFalls contains 16 SPARCv9 cores, in which each CMP is a Niagara2
chip with 8 cores. Each core runs at 1.16 GHz with a peak performance of 1.16 Gflops, and
has a private 8 KB L1 cache. All eight cores share a 4 MB L2 cache. In addition, each core

© 2008 IOP Publishing Ltd 1

SciDAC 2008

IOP Publishing

Journal of Physics: Conference Series 125 (2008) 012079

doi:10.1088/1742-6596/125/1/012079

Table 1. Summary of the experimental machines.

Intel Colvertown | Sun VictoriaFalls | IBM Power5 (575)
| Core type superscalar (4) | multithreaded (8) superscalar (4)
Clock (GHz) 2.3 1.16 1.9
L1 Dcache 32 KB 8 KB 32 KB
DP Gflops 9.3 1.16 7.6
| # Sockets 2 2 8
cores/socket 4 8 1
L2 cache | 4 MB/2-cores 4 MB/socket 1.92 MB /core
(16 MB) (8 MB) (32 MB L3$/node)
DP Gflops 4.7 18.7 60.8
DRAM GB/s read 21.3 42.6 200
write 10.6 21.3 -
Byte/flop ratio 0.29 0.44 3.29
Power /socket 160 84 500
(Watts) (max) (max) (measured [3])

supports eight hardware threads, and the entire dual-chip system provides a total of 128 threads.
The two sockets are interconnected via External Coherence Hubs (ECH). There are altogether 8
FBDIMM memory channels, delivering the aggregate DRAM bandwidth of 42.6 GB/s for read
and 21.3 GB/s for write.

The IBM p575 Power5 is a scalable distributed-memory high-performance computing system
consisting of conventional SMP nodes. The entire system (bassi at NERSC) has 111 compute
nodes, each of which has 8 Power5 processors running at 1.9 GHz and has a shared-memory
pool of 32 GBytes. Each processor has a peak performance of 7.6 GFlops (4 flops per cycle) and
has a private 32 KB L1 cache. We use only one SMP node in this study.

3. Overview of the algorithms and implementations

3.1. Factorization in SuperLUMT using Pthreads or OpenMP

SuperLU.MT [8] was first developed with Pthreads, targeted for the SMPs of modest size (e.g., 32
processors). Recently, we have added OpenMP support. The factorization uses a panel-based
left-looking algorithm, with partial pivoting and possibly with diagonal preference to better
preserve sparsity. The kernel is based on supernode-panel update, which invokes multiple calls
to BLAS 2, effectively achieving BLAS 2.5 speed. Parallelization uses an asychronous and
barrier-free dynamic algorithm to schedule both coarse-grained and fine-grained parallel tasks
and achieve a high level of concurrency. A globally shared task queue is used to store the ready
panels in the column elimination tree; and whenever a thread becomes free, it obtains a ready
panel from the task queue. The coarse-grained task is to factorize the independent panels in
the disjoint subtrees, while the fine-grained task is to update panels by previously computed
supernodes. The scheduler facilitates the smooth transition between the two types of tasks, and
maintains load balance dynamically. Figure 1(a) illustrates the left-looking factorization scheme
and the dynamic scheduling method using the elimination tree.

3.2. Factorization in SuperLUDIST using MPI

In order to address the scalability issues, the parallel algorithm in SuperLUDIST [5] is
significantly different from that in SuperLUMT. Using the supernode partition, we perform a
two-dimensional (nonuniform) block-cyclic matrix-to-processor mapping. The factorization uses

a block-based right-looking algorithm which comprises abundance of parallelism during the block
2

SciDAC 2008 IOP Publishing
Journal of Physics: Conference Series 125 (2008) 012079 doi:10.1088/1742-6596/125/1/012079

Table 2. Properties of the test matrices. Minimum degree algorithm was applied to the
structure of |A| 4 |A|T. “fill-ratio” denotes the ratio of number of nonzeros in L + U over that
in A; “Mean S-node” refers to an average number of columns in a supernode.

Application Dimension | Nonzeros in A | Fill-ratio | Mean S-node
g7jac200 | economic model 59,310 837,936 40.2 1.9
stomach | duodenum model 213,360 3,021,648 45.4 4.0
torsol 2D model of torso 116,158 8,516,500 3.1 4.0
twotone | nonlinear anal. circuit 120,750 1,224,224 9.3 2.3

outer-product updates to the Schur complements. We use the elimination DAGs to identify
block dependencies, and a look-ahead scheme to overlap communication with computation on
the critical path. Figure 1(b) illustrates the 2D block-cyclic partition and distribution for a
sparse matrix.

Matrix Process mesh

P, P, o | 1]2);0 |1] 2 0 ETE] . .)
—~ S Lalals 3 |a ’_ﬁ:\ 3 345 4 rocmes
U 0 LZ 0 |1 2 0 %%05\3\
3 (45| 3 N\
o A 0o [1]2 o? H:r Hjﬂ Q120 Z%@
> 1 4l5 5,
L 3 HERER Hsﬂ (-l ®2]0 1_,0V %
DONE WORKING OJCH o l1l2l o |1 o 3 4|53 ;:4 53 8
® DONE © WORKING ACTIVE
(a) 1D left-looking factorization. (b) 2D right-looking factorization. (c) 2D triangular solve.

Figure 1. Illustration of the parallel algorithms in SuperLUMT (a) and SuperLUDIST (b, c).

3.3. Triangular solution in SuperLU DIST

The triangular solution phase in SuperLUMT is not yet parallel; therefore we evaluate only
the parallel algorithm in SuperLU DIST. When solving Lz = b, where L is a lower triangular
matrix, the ith solution component is computed as z; = (b; — Z;;l Li; - x5)/Ls;. Therefore,
computation of x; needs some of the previous solution components x;,j < ¢, depending on the
sparsity structure of the i-th row of L. This sequentiality often poses scaling hurdle for a parallel
algorithm. Another hurdle to achieve good performance is the much lower arithmetic density
as measured by flops per byte of DRAM access or communication, compared to factorization.
In SuperLUDIST, the parallel triangular algorithm uses the same 2D block-cyclic distribution
as used in the factorization phase. Figure 1(c) illustrates such a distribution and the solution
procedure. The processes owning the diagonal blocks (called diagonal processes) are responsible
for computing the corresponding blocks of the x components. Consider one block row of the
L matrix, as circled in figure 1(b), computation of the corresponding = entry needs to proceed
following the steps @O, @, @, and @. Communication is necessary when the data reside on
different processes, as in steps) and @).

4. Experimental results
Table 2 presents the characteristics of our benchmarking matrices, which are available from the
University of Florida Sparse Matrix Collection [6]. We benchmarked the Pthreads version of
SuperLU.MT, and SuperLUDIST using MPICH ([7].

Table 3 shows the parallel factorization times of the two solvers on the Clovertown. The time
includes both symbolic and numerical factorization. First, when we used MPICH configuration
with ch_p4 device for communication through sockets, the code slowed down significantly beyond

two or four cores. After we switched to ch_shmem setup, we obtained respectable speedup. So
3

SciDAC 2008 IOP Publishing
Journal of Physics: Conference Series 125 (2008) 012079 doi:10.1088/1742-6596/125/1/012079

Table 3. Factorization time in seconds on Intel Clovertown.

Matrix Threads or Tasks 1 2 4 8 | Speedup
g7jac200 | SuperLUMT 32.78 | 17.91 12.41 10.60 3.1
SuperLUDIST | ch_shmem 28.10 | 15.95 | 11.06 7.57 3.9

ch_p4 28.62 | 22.98 | 56.31 | 62.39

speedup ratio (_MT/_DIST) 1.00 | 1.03 1.01 0.80
stomach | SuperLUMT 64.38 | 37.15 | 20.39 | 17.24 3.7
SuperLUDIST | ch_shmem 43.45 | 25.91 | 1581 | 13.64 3.4

ch_p4 44.28 | 27.84 | 210.99 | 264.58

speedup ratio (_MT/_DIST) 1.00 | 0.99 1.10 1.10
torsol SuperLUMT 943 | 4.92 2.87 2.20 4.3
SuperLUDIST | ch_.shmem 9.43 | 5.83 4.55 4.76 2.2

ch_p4 9.62 | 7.23 | 5477 | 76.32

speedup ratio (_MT/_DIST) 1.00 | 1.12 1.49 1.99
twotone | SuperLUMT 6.80 | 4.05 2.32 1.83 3.9
SuperLUDIST | ch_shmem 18.08 | 10.17 7.55 7.21 2.1

ch_p4 18.34 | 12.19 | 47.30 | 60.99

speedup ratio (_MT/_DIST) 1.00 | 0.95 2.26 1.86

for a large distributed system comprising manycore chips, it is imperative to be able to configure
MPICH in a hybrid device mode — ch_shmem within socket and ch_p4 across sockets. Currently,
this hybrid mode is not avaialbe. Second, we examine the single core performance. We would
expect that SuperLUDIST outperforms SuperLUMT, because the former uses BLAS 3, whereas
the latter uses only BLAS 2.5. This is true only with two matrices, g7jac200 and stomach, which
have relatively denser L and U factors (the fill ratios are over 40; see table 2), and hence BLAS
3 plays a larger role. For sparser problems, the algorithms are memory-bound. We believe the
worse performance of SuperLU DIST is mainly due to more memory traffic of the right-looking
algorithm, especially more memory write operations. Third, we examine the speedups of the
two codes. The last column of table 3 shows the speedup obtained when creating eight threads
or MPI tasks. The best speedup is 4.3 and is less than what we observed on conventional SMP
processors [8]. After performing code profiling, we found that the overhead of the scheduling
algorithm using the shared task queue and the synchronization cost using mutexes (locks) are
quite small. Further study is needed to understand where the time goes. Lastly, SuperLUMT
usually achieves more speedup than SuperLU_DIST. This can be seen in the row “speedup ratio
(_MT/_DIST)” associated with each matrix. In some cases, SuperLUMT achieves a factor of two
more speedup than SuperLU DIST.

Table 4 shows the parallel factorization times on the Sun VictoriaFalls. The single-thread
performance of SuperLUDIST is usually better than that of SuperLUMT. This is probably
because the machine has a higher byte-to-flop ratio (see table 1) compared to Clovertown, hence
it does not penalize an algorithm that is memory-bandwidth demanding, such as the right-
looking algorithm in SuperLUDIST. However, the coarse-grained task parallelism supported by
MPI programming does not match the fine-grained multithreading architecture; MPICH uften
crashes when more than 16 tasks are generated. The Pthreads program is much more robust,
and SuperLUMT can effectively use 64 threads. Similar to the Clovertown, SuperLUMT usually
achieves more speedup than SuperLUDIST. In some case, SuperLUMT achieves a factor of 2
more speedup than SuperLU DIST.

For the parallel triangular solution, we compare the eight-core Clovertown with the eight-
processor Power5 SMP node. The parallel runt imes are tabulated in table 5. The columns

4

SciDAC 2008 IOP Publishing
Journal of Physics: Conference Series 125 (2008) 012079 doi:10.1088/1742-6596/125/1/012079

Table 4. Factorization time in seconds on Sun VictoriaFalls (“f” indicates an MPI failure).

Matrix Threads or Tasks 1 2 4 8 16 32 64 128

g7jac200 | SuperLU_MT 480.84 | 244.24 | 126.16 68.93 | 40.22 | 28.47 | 23.95 | 24.80
SuperLU_DIST 283.44 | 153.18 83.09 49.20 | 31.70 f f f
speedup ratio (_MT/_DIST) 1.00 1.06 1.09 1.15 1.24

stomach | SuperLU_MT 1212.97 | 620.58 | 319.85 | 168.04 | 90.01 | 56.51 | 53.54 | 62.37
SuperLU_DIST 598.49 | 329.28 | 183.90 | 116.22 | 85.56 f f f
speedup ratio (_MT/_DIST) 1.00 1.06 1.13 1.33 1.79

torsol SuperLU_MT 201.05 | 102.09 52.51 27.41 | 15.16 | 11.56 | 10.23 | 11.34
SuperLU_DIST 101.68 58.25 32.53 21.83 | 17.06 f f f
speedup ratio (_MT/_DIST) 1.00 1.12 1.18 1.46 2.01

twotone | SuperLU_MT 113.12 60.09 31.50 17.18 | 11.17 8.17 7.26 7.90
SuperLU_DIST 135.43 78.44 46.64 30.01 | 18.49 f f f
speedup ratio (_MT/_DIST) 1.00 1.08 1.19 1.38 1.26

Table 5. SuperLUDIST triangular solution time in seconds on Clovertown and Powerb.

Current Improved |
Matrix Tasks 1 2 4 8 1 2 4 8

g7jac200 | Clovertown || 0.39 | 0.79 | 0.76 | 2.94 || 0.30 | 0.28 | 0.29 0.44
Power5 || 0.61 | 0.68 | 0.46 | 0.39 0.43 | 0.39 | 0.28 0.22
stomach | Clovertown || 0.93 | 1.21 | 3.79 | 6.74 0.77 | 0.74 | 0.53 0.90
Powerb || 1.24 | 1.29 | 0.86 | 0.75 092 | 0.77 | 0.59 0.46
torsol Clovertown || 0.28 | 0.52 | 1.98 | 3.22 0.21 | 0.29 | 0.32 0.45
Power5 || 0.31 | 0.41 | 0.27 | 0.24 || 0.22 | 0.24 | 0.18 0.13
twotone | Clovertown | 0.46 | 1.51 | 4.42 | 7.52 0.32 | 0.44 | 0.47 0.80
Power5 || 0.71 | 0.97 | 0.69 | 0.58 044 | 052 | 044 | 0.34

labeled “Current” correspond to the current released code, and the columns labeled “Improved”
refer to the new implementation as a result of this study. As seen in the table, the current
code runs much more slower with more cores involved on the Clovertown. A similar trend was
also observed on the VictoriaFalls. After profiling various parts of the code, we found that the
slowdown is due to many calls of MPI_Reduce, which can take over 75% of the time using eight
cores. In figure 1(b), each diagonal process needs to know which off-diagonal processes will have
sum contributions to be sent to the diagonal process. To compute this count, every process
holds a 0/1 flag indicating whether this process has nonzero blocks. Then all the processes in
each row communicator perform an MPI_Reduce (by SUM) over the flags, with root being the
diagonal process. Overall, each block row corresponds to one such reduction operation.

The improvement we have made is the following. Instead of performing many reductions
with one integer, we allocate a flag array of integers, the size of which is the number of block
rows owned by each process. Each entry is the flag associated with one block row. Then all
the processes in the respective process row perform only one reduction operation on this flag
array. This has greatly reduced the memory and communication latency cost. On eight-core
Clovertown, the improvement is significant, ranging from 6- to 9-fold. Even on the conventional
SMP node, such as eight-CPU Power5, we also obtained 63% to 84% improvement.

Acknowledgments

This research was supported in part by the Director, Office of Advanced Scientific Computing
Research of the U.S. Department of Energy undercontract number DE-AC03-76SF00098. We
used the multicore clusters with the PSI project and the RADlab at UC Berkeley, and the
resources at the National Energy Research Scientific Computing Center.

5

SciDAC 2008 IOP Publishing

Journal of Physics: Conference Series 125 (2008) 012079

doi:10.1088/1742-6596/125/1/012079

References

(1]

[

2

)

o

=i

i)

=

i)

]

Li X S 2005 overview of SuperLU: Algorithms, implementation, and user interface ACM Trans. Mathematical
Software 31(3):302-325

Phillips S 2007 Victoriafalls: Scaling highly-threaded processor cores HOT CHIPS 19: A Symposium on
High Performance Chips (Stanford, CA)

Shalf J 2008 (Private communications)

Williams S 2008 (Private communications)

Li X S and Demmel J W 2003 SuperLU_DIST: A scalable distributed-memory sparse direct solver for
unsymmetric linear systems ACM Trans. Math. Soft. 29(2):110-140

Davis T A 1997 University of Florida Sparse Matriz Collection http://www.cise.ufl.edu/research /sparse/matrices

MPICH - A portable implementation of MPI http://www-unix.mcs.anl.gov/mpi/mpichl/

Demmel J W, Gilbert J R, and Li X S 1999 An asynchronous parallel supernodal algorithm for sparse
Gaussian elimination. SIAM J. Matriz Analysis and Applications 20(4):915-952

