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ABSTRACT
A 
omplete des
ription of two outgoing ele
trons following

an ionizing 
ollision between a single ele
tron and an atom

or mole
ule has long stood as one of the unsolved funda-

mental problems in quantum 
ollision theory. In this paper

we des
ribe our use of distributed memory parallel 
omput-

ers to 
al
ulate a fully 
onverged wave fun
tion des
ribing

the ele
tron-impa
t ionization of hydrogen. Our approa
h

hinges on a transformation of the S
hr�odinger equation that

simpli�es the boundary 
onditions but requires solving very

ill-
onditioned systems of a few million 
omplex, sparse lin-

ear equations. We developed a two-level iterative algorithm

that requires repeated solution of sets of a few hundred thou-

sand linear equations. These are solved dire
tly by LU -

fa
torization using a spe
ially tuned, distributed memory

parallel version of the sparse LU -fa
torization library Su-

perLU. In smaller 
ases, where dire
t solution is te
hni
ally

possible, our iterative algorithm still gives signi�
ant savings

in time and memory despite lower mega
op rates.

1. INTRODUCTION
This paper des
ribes our use of massively parallel pro-


essing (MPP) 
omputers to solve a long-standing, funda-

mental problem in atomi
 physi
s. Our work produ
ed the

�rst 
al
ulations of detailed information about two outgoing

ele
trons following an ionizing 
ollision between an ele
tron

and a hydrogen atom that agree with experiment over a wide

range of energies and angles [21, 4, 5, 13℄. We 
al
ulate a six-

dimensional wave fun
tion by solving the time-independent

S
hr�odinger equation using a mathemati
al transformation

to simplify the s
attering boundary 
onditions. This re-
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quires solving several large (on the order of 1.2 to 8 million)

sets of 
omplex, sparse linear equations that are very ill-


onditioned.

For this we developed a spe
ialized, two-level iterative al-

gorithm. As a pre
onditioning step in iteratively solving the

full set of equations we repeatedly solve moderately large

sets (between 209,764 and 334,084) of 
omplex, sparse lin-

ear equations. These, in turn, are solved iteratively using

the dire
t solution of a simpler set of equations as a pre
on-

ditioner. To a

omplish the inner pre
onditioning step we

use a parallel version of the sparse LU -fa
torization library

SuperLU [11, 14℄ with enhan
ed 
apabilities to handle 
om-

plex data types and to solve multiple independent systems

simultaneously on separate groups of pro
essors. Our 
odes

are written in Fortran 90 and C using MPI for 
ommuni
a-

tion and have been used on a Cray T3E-900 and an IBM

SP.

The s
ienti�
 breakthrough 
ould not have been a
hieved

without our newly developed algorithms and parallel pro-


essing 
apabilities outlined below:

� A new mathemati
al transformation for solving the

time-independent S
hr�odinger equation makes the nu-

meri
al 
omputational task feasible.

� A non-
onventional, parallel, two-level iterative algo-

rithm for solving 
omplex linear systems that are very

large, sparse and ill-
onditioned. In parti
ular, our

parallel pre
onditioner using SuperLU is 
ru
ial for


onvergen
e.

� Demonstrated high performan
e in solving systems of

equations as large as 8 million taking between 40 and

140 minutes and using up to 96 pro
essors.

The rest of the paper is organized as follows. In Se
-

tion 2, we dis
uss the s
ienti�
 appli
ation, the obsta
les to

performing a

urate 
al
ulation, and survey the earlier at-

tempts in solving this problem. Se
tion 3 des
ribes our new

mathemati
al formulation for this problem and the resulting

sparse linear systems. One major 
ontribution is a simpli-

�ed fomulation of the s
attering boundary 
onditions that

make the 
omputational tasks tra
table. Se
tion 4 gives an

overview of our parallel solver strategy and 
ompares with

some other solution te
hniques. Se
tion 5 dis
usses the it-

erative algorithm and performan
e for the un
oupled equa-

tions, and the pre
onditioner in parti
ular. Solutions of the

un
oupled equations are used as pre
onditioning to solve

the fully 
oupled equations, the details of whi
h are given



in Se
tion 6. Finally, in Se
tion 7 we highlight the s
ienti�


results obtained through this 
omputation.

2. SCIENTIFIC APPLICATION
If the 
ollision between a target atom (or mole
ule) and an

ele
tron is of suÆ
iently high energy then there is some prob-

ability that the 
ollision will result in deta
hing an ele
tron,

originally bound to the target. This pro
ess is known as

ele
tron-impa
t ionization and is 
hara
terized by an initial

state with a single ele
tron in
ident on the target followed

by a �nal state with two ele
trons outgoing from the ionized

target. The two-outgoing ele
trons make ele
tron-impa
t

ionization mu
h more diÆ
ult to treat than other ele
tron-

s
attering events, su
h as ex
itation of the target and elasti


s
attering, that have only one outgoing ele
tron in the �nal

state. A 
omplete theoreti
al des
ription of ele
tron-impa
t

ionization requires the solution of a three-body problem in

quantum me
hani
s that is further 
ompli
ated by the exis-

tan
e of long-range, Coulomb intera
tions between all three

parti
les in the �nal state.

Ele
tron-impa
t ionization is one of the most basi
 phe-

nomena in low-energy 
ollision physi
s. It is the fundamen-

tal me
hanism for ion formation in mass spe
tros
opy and

is responsible for forming and sustaining low-temperature

plasmas that are used in appli
ations ranging from 
uores-


ent lighting to the pro
essing of sili
on 
hips. A better un-

derstanding of this basi
 phenomenon will lead to the abil-

ity to better understand and model ma
ros
opi
 phenom-

ena in low-temperature plasmas that are important in the

atmospheri
 s
ien
es, astrophysi
s, and a variety of indus-

trial appli
ations. Despite its importan
e, it is only re
ently

that, with the aid of MPP, we have a
hieved what 
ould be


onsidered a 
omplete des
ription of ele
tron-impa
t ioniza-

tion of the simplest atomi
 target { a ground state hydrogen

atom.

Probabilities for 
ollision events are traditionally expressed

in units of area and are referred to as 
ross se
tions. The

ionization 
ross se
tion, then, gives the probability that an

atom will be ionized by 
ollision with an ele
tron at a par-

ti
ular in
ident energy. A 
omplete theoreti
al des
ription

means 
al
ulating di�erential 
ross se
tions that give prob-

ability distributions for the �nal energies and dire
tions of

both outgoing ele
trons. The primary obsta
le to doing this

is the diÆ
ulty in formulating the 
orre
t s
attering bound-

ary 
onditions for the two outgoing ele
trons. Mu
h of the

work on the mathemati
al theory of ionization, beginning in

the 1960s [18, 23℄, has been in developing asymptoti
 forms

of the wave fun
tion. So far, no su
h asymptoti
 that 
ould

be used in an a
tual 
al
ulation have been developed.

The leading approa
hes to treating ele
tron-atom s
at-

tering above the ionization threshold have been attempts

to extend 
lose-
oupling formalisms, whi
h work well for

two-body pro
esses su
h as dis
rete ex
itations of the atom

and elasti
 s
attering, to the three-body problem of ioniza-

tion [10, 8℄. The most su

essful of these, the 
onvergent


lose-
oupling method has produ
ed a

urate total ioniza-

tion 
ross se
tions, but failed to 
onverge to the 
orre
t

di�erential 
ross se
tions [9℄. Other approa
hes are based

on various approximations that limit their usefulness, when

they work at all, to very spe
i�
 geometries [17, 25℄. One

method that has re
ently been shown to be 
apable of pro-

du
ing 
orre
t di�erential 
ross se
tions for ionization [6℄ in-

volves propagation of the time-dependent S
hr�odinger equa-

tion [19℄. However, this method is very 
omputationally in-

tensive and has yet to produ
e 
onverged results.

Our approa
h builds on the early, formal theory but ob-

viates the need to spe
ify the exa
t s
attering boundary


onditions by using a mathemati
al transformation of the

S
hr�odinger equation. Although this transformation makes

the boundary 
onditions tra
table, its implementation re-

quires solving very large sets of 
omplex, sparse linear equa-

tions. Furthermore, the systems are very ill-
onditioned. By

developing spe
ialized algorithms for solving these systems

of equations on distributed memory, parallel super
omput-

ers we have a
hieved the ability to 
al
ulate arbitrarily a

u-

rate, time-independent wave fun
tions des
ribing ele
tron-

hydrogen s
attering above the ionization threshold. From

these wave fun
tions we 
an extra
t any di�erential 
ross

se
tion for ionization providing, for the �rst time, a 
om-

plete des
ription of ele
tron-impa
t ionization.

3. MATHEMATICAL FORMALISM

3.1 Differential equation
There are no expli
itly time dependent intera
tions so the

system 
an be des
ribed by a wave fun
tion 	

+

that is a

solution to the time-independent S
hr�odinger equation,

H	

+

= E	

+

; (1)

where E is the total energy of the system and H is the Hamil-

tonian des
ribing the intera
tion of two ele
trons with ea
h

other and with the nu
leus. The nu
leus is assumed to be in-

�nitely massive and �xed in spa
e so 	

+

is a six-dimensional

fun
tion of the 
oordinates (r

1

and r

2

) for the two ele
trons

relative to the nu
leus. As a �rst step in 
orre
tly treat-

ing the boundary 
onditions of 	

+

we partition it into two

terms,

	

+

(r

1

; r

2

) = 	

0

k

i

(r

1

; r

2

) + 	

+

s


(r

1

; r

2

) : (2)

The initial state of an ele
tron with momentum k

i

in
ident

on a ground state hydrogen atom is des
ribed by 	

0

k

i

,

	

0

k

i

=

1

p

2

h

�

1s

(r

1

)e

ik

i

�r

2

+ (�1)

S

�

1s

(r

2

)e

ik

i

�r

1

i

; (3)

whi
h is either symmetri
 (for total spin S = 0) or anti-

symmetri
 (S = 1) with respe
t to inter
hange of the ele
-

trons' 
oordinates. The remaning term, 	

+

s


, is referred to as

the s
attered wave and 
ontains all of the s
attering infor-

mation in its asymptoti
 (large distan
es) limit. Although

the asymptoti
 form of 	

+

s


still 
annot be stated expli
itly

we do know that at large distan
es 	

+

s


is a purely outgo-

ing wave. The s
attered wave is 
al
ulated by solving the

inhomogeneous di�erential equation

(E �H)	

+

s


(r

1

; r

2

) = (H� E)	

0

k

i

(r

1

; r

2

) ; (4)

that 
omes from rearrangement of the S
hr�odinger equation,

with outgoing wave boundary 
onditions on 	

+

s


.

3.2 Angular momentum expansion
The six-dimensional di�erential equation in Eq. 4 is 
on-

verted to sets of 
oupled two-dimensional di�erential equa-

tions by expanding the wave fun
tion in terms of 
oupled

spheri
al harmoni
s Y

L0

l

1

;l

2

(r̂

1

; r̂

2

). Like ordinary spheri
al

harmoni
s, the Y

L0

l

1

;l

2

are orthonormal fun
tions of the an-

gular variables. They are labeled by the total angular mo-

mentum quantum number L and the single-ele
tron angular



momentum quantum numbers l

1

and l

2

. To 
al
ulate 	

+

s


we

then need to evaluate the two-dimensional radial fun
tions

 

L

l

1

l

2

in its angular momentum expansion,

	

+

s


(r

1

; r

2

) =

X

L;l

1

;l

2

i

L

r

1

r

2

 

L

l

1

l

2

(r

1

; r

2

)Y

L0

l

1

;l

2

(r̂

1

; r̂

2

) : (5)

The angular momentum expansion of the right-hand side of

Eq. 4 is known analyti
ally.

Substituting the expansions of 	

+

s


and 	

0

k

i

into Eq. 4

leads to sets of 
oupled, two-dimensional di�erential equa-

tions

(E �H

l

1

(r

1

)� H

l

2

(r

2

)) 

L
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1

l

2
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1
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2

)

�

X

l

0

1

;l
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2

hl
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l
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jjl

0
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l

0

2

i
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L

l

0

1

;l

0

2

(r

1

; r

2

) = �

L

l

1

l

2

(r

1

; r

2

) (6)

where the �

L

l

1

l

2

are the radial fun
tions from the expansion

of the right-hand side of Eq. 4, the hl

1

l

2

jjl

0

1

l

0

2

i

L

are two-

dimensional 
oupling potentials arising from the ele
tron-

ele
tron intera
tion, and the H

l

are the one-dimensional,

Coulomb radial Hamiltonians

H

l

(r) � �

1

2

d

2

dr

2

+

l(l + 1)

2r

2

�

1

r

: (7)

Sin
e total angular momentum is a 
onserved quantity there

is a separate set of 
oupled equations for ea
h value of the

quantum number L.

3.3 Simplifying the boundary conditions
The key element in our formalism is the exterior 
omplex

s
aling transformation that simpli�es the s
attering bound-

ary 
onditions for ea
h of the  

L

l

1

l

2

. Formally, the  

L

l

1

l

2

are

zero along the 
oordinate axes (r

1

= 0 or r

2

= 0) but for

large distan
es they are unbounded, os
ilatory fun
tions. In

the absen
e of ionization the boundary 
onditions for large

distan
es 
an be treated by mat
hing to known asymptoti


forms. No su
h usable asymptoti
 form is known for ioniza-

tion.

We avoid having to expli
itly spe
ify the asymptoti
 form

for ionization by 
al
ulating the  

L

l

1

l

2

on a 
omplex 
ontour

[20, 16℄. This transformation of the S
hr�odinger equation,


alled exterior 
omplex s
aling (ECS), was invented by Si-

mon [24℄ to study mole
ular resonan
es in s
attering theory.

Both radial 
oordinates are rotated into the upper half of the


omplex plane beyond some distan
e R

0

. This 
oordinate

mapping,

r !

�

r; r < R

0

;

R

0

+ (r� R

0

)e

i�

; r � R

0

;

(8)

(where 0 < � < �=2) de�nes a box between zero and R

0

in

r

1

and r

2

where both 
oordinates are real. Outside of that

box at least one 
oordinate is 
omplex. The e�e
t of su
h

a 
oordinate transformation on a purely outgoing wave is

to transform it into a exponentially de
aying fun
tion be-

yond R

0

. An example of a  

L

l

1

l

2


al
ulated with the ECS

transformation is shown in Figure 9. The 
al
ulated  

L

l

1

l

2

are identi
al to the uns
aled  

L

l

1

l

2

inside the interior box

but de
ay exponentially for either r

1

or r

2

greater than R

0

.

Thus, ECS simpli�es the s
attering boundary 
onditions so

that the transformed  

L

l

1

l

2

satisfy Diri
hlet boundary 
on-

ditions.
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Figure 1: Blo
k-matrix stru
ture of the 
oupled

equations (Equation 6) using L = 0 as an exam-

ple. The d

l

1

;l

2

are diagonal matri
es and the A

l;l

are sparse, not diagonal, matri
es.

3.4 The matrix problem
We solve the 
oupled equations in Eq. 6 for the  

L

l

1

l

2

on a

two-dimensional radial grid using �nite di�eren
e to approx-

imate the derivatives. This results in a large linear system

with a blo
k-matrix stru
ture illustrated in Figure 1. The

dimension of ea
h blo
k is the number of grid points, and

the number of blo
ks is the number of partial wave terms re-

tained in the 
oupled equations. The matrix is 
omplex non-

Hermitian and non-symmetri
. The right-hand side ve
tor

is formed from the values of ea
h of the �

L

l

1

l

2

stored 
on-

tiguously. Likewise, the solution ve
tor is partitioned so

that individual segments store the values of the 
orrespond-

ing  

L

l

1

l

2

. The ordering of the (l

1

; l

2

) pairs is determined

for ea
h value of L by guessing the relative importan
e of

the individual terms in the angular momentum expansion in

Eq. 5.

Diagonal blo
ks, A

l

1

;l

2

, are matrix representations of the

two-dimensional operator,

A

l

1

;l

2

� E � H

l

1

(r

1

) �H

l

2

(r

2

)� hl

1

l

2

jjl

1

; l

2

i

L

: (9)

Ea
h A

l

1

;l

2

has the sparsity stru
ture of a two-dimensional,

sixth-order (7-point formulas for ea
h se
ond derivative), �-

nite di�eren
e Lapla
ian. The exa
t stru
ture of the di-

agonal blo
ks is shown on the right-hand side of Figure 2.

The A

l

1

;l

2

are 
omplex, non-Hermitian be
ause of the ECS

transformation and they are non-symmetri
 be
ause of the

high-order �nite di�eren
e formulas. The o�-diagonal blo
ks

are diagonal matri
es representing the 
oupling potentials

hl

1

l

2

jjl

0

1

l

0

2

i

L

.

In order to obtain an a

urate des
ription of ionization

we 
al
ulate the  

L

l

1

l

2

out to distan
es of at least R

0

= 80a

0

for higher energies and R

0

= 140a

0

for lower energies. One

a

0

= 5:29 � 10

�11

meters is the radius of a hydrogen atom

in its ground state. The primary grid spa
ings range from

0:2a

0

to 0:3a

0

. However, at small distan
es the grid spa
ing

is 0:05a

0

be
ause of the singularity in the Coulomb poten-

tial. The grids typi
ally extend beyond R

0

about 25a

0

. In

this region the  

L

l

1

l

2

are exponentially de
aying fun
tions

and larger grid spa
ings may be used. The number of grid

points (in one dimension) used in our 
al
ulations ranges be-

tween 458 and 578 so the dimension of the individual blo
ks

in Figure 1 ranges between 209,764 and 334,084. By using

7-point �nite di�eren
e formulas we 
an 
al
ulate the  

L

l

1

l

2

very a

urately on grids 
omposed of sub-regions with uni-



form grid spa
ing. This is parti
ularly important when using

the ECS transformation given in Eq. 8 whi
h requires that

the �nite di�eren
e formulas be generalized so that the grid

\spa
ings" are 
omplex beyond R

0

. The number of blo
ks in

the matrix equation illustrated in Figure 1 is determined by

the number of (l

1

; l

2

) pairs kept in the angular momentum

expansion (Eq. 5) for a parti
ular value of L. Typi
ally, the

number of blo
ks ranges between 6 (for L = 0) and 24 (for

higher L). Thus, for a single set of 
oupled equations the

size of the system of 
omplex, linear equations that we solve


an be as large as 8 million.

4. OVERVIEW OFTHEPARALLELALGO-
RITHMS

Be
ause of the size of the matrix (dimension up to 8 mil-

lion), we need to use an iterative algorithm for the linear

systems. We devloped a two-level, iterative algorithm for

solving the sets of 
oupled di�erential equtions. Here we

give an overview of the algorithm and our parallelization

strategy. The detailed algorithms and performan
e appear

in Se
tions 5 and 6. Sin
e there is no 
oupling between  

L

l

1

l

2

with di�erent values of the quantum number L, there is an

independent set of 
oupled equations for ea
h L. Rather

than having an \embarrassingly parallel" 
omponent of our

algorithm we solve the 
oupled equations for ea
h L indepen-

dently. Thus, our two-level, parallel algorithm is designed

to solve a single set of 
oupled equations for some value of

L.

The �rst level of our algorithm is based on the blo
k-

matrix representation of the 
oupled equations illustrated in

Figure 1. We solve the 
oupled equations iteratively using

solution to the un
oupled equations as a blo
k-Ja
obi pre-


onditioner. Ea
h diagonal blo
k in Figure 1 is the matrix

for one of the un
oupled equations (i.e. with hl

1

l

2

jjl

0

1

l

0

2

i

L

= 0

for (l

1

; l

2

) 6= (l

0

1

; l

0

2

)).

We also use an iterative algorithm for solving the un
ou-

pled equations whi
h are themselves large linear systems of

equations. This inner iteration level a

ounts for the bulk

of the 
omputational work. For the pre
onditioning step in

the inner iteration we use a dire
t solver to solve the equa-

tions that have the same dimension but are more sparse than

the original matrix. For our appli
ation, the key advantage

of using the iterative algorithm for solving ea
h un
oupled

equation, 
ompared with using a dire
t solver, is that mu
h

less memory is required for storing the LU -fa
tors of the pre-


onditioner than storing the fa
tors of the original matrix.

Be
ause of the memory savings we 
an use a smaller number

of pro
essors per (l

1

; l

2

) pair in the 
oupled equations.

Sparse dire
t solvers are mu
h harder to parallelize, a task

mu
h too involved for an appli
ation programmer to spend

time on. In re
ent years, some new algorithms and software

pa
kages have emerged whi
h exploit new ar
hite
tural fea-

tures, su
h as memory hierar
hy and parallelism. Examples

of publi
ally available, parallel unsymmetri
 solvers in
lude

MUMPS [1℄ (multifrontal algorithm), SPOOLES [3℄ (left-

looking algorithm), SuperLU [14℄ (right-looking algorithm),

and WSMP [12℄ (multifrontal algorithm). WSMP is tuned

parti
ularly for the IBM SP ar
hite
ture, however, it only

has support for shared memory parallelism. MUMPS does

not have support for 
omplex matri
es. In a separate work,

we 
ompared MUMPS and SuperLU only for the real matri-


es on the Cray T3E, up to 512 pro
essors. SuperLU often

uses less memory and s
ales better, and MUMPS is usually

faster on smaller number of pro
essors. See [2℄ for detailed


omparison results. For our appli
ation, SuperLU seems to

be the only 
hoi
e be
ause of support for both 
omplex ma-

tri
es and distributed memory ma
hines.

In solving these subsystems using SuperLU, we �rst re-

order the equations and variables using a minimum degree

algorithm [15℄, applied on the graph of A

T

+A, to redu
e the

�ll-ins in the LU -fa
tors. In the initial stage of the develop-

ment, we also experimented with nested disse
tion ordering

applied on A

T

+A, but the �ll redu
tion is not better than

using minimum degree ordering for our 2D meshes. So we

did not pursue that any further.

The blo
k-matrix stru
ture (see Figure 1) provides a natu-

ral, \
oarse" level of parallelism. We divide the total number

of pro
essors into pro
essor subgroups of equal size. Ea
h

subgroup is assigned to a parti
ular (l

1

; l

2

) pair. Therefore,

the number of pro
essor subgroups s
ales dire
tly with the

number of terms (for a parti
ular L) that are kept in the an-

gular momentum expansion given in Eq. 5. The bulk of the


omputations, su
h as solving individual un
oupled equa-

tions, are then lo
al to individual subgroups. We typi
ally

use four pro
essors for ea
h subgroup. In the 
ase of the

Cray T3E-900, on whi
h these 
odes were initially devel-

oped, this was the minimum number of nodes required for

solving a single un
oupled equations be
ause of memory lim-

itations. On newer ma
hines su
h as NERSC's 
urrent IBM

SP it is possible to solve the same un
oupled equations with

fewer pro
essors, but we still �nd that using four pro
essors

per subgroup strikes a good balan
e between absolute time

and eÆ
ien
y.

5. UNCOUPLED EQUATIONS AS PRECON-
DITIONER

5.1 Solving the uncoupled equations
Our iterative algorithm for solving the 
oupled equations

in Eq. 6 requires solution to un
oupled equations, de�ned

by setting hl

1

l

2

jjl

0

1

l

0

2

i

L

= 0 for (l

1

; l

2

) 6= (l

0

1

; l

0

2

), that have

the form

A

l

1

;l

2

x

L

l

1

;l

2

= b

L

l

1

;l

2

; (10)

where A

l

1

;l

2

is shown in Eq. 9. Even for a single un
oupled

equation the dimension of the linear system 
an be very

large, up to 334,084 in produ
tion runs and more than 2

million for testing purposes. Ea
h un
oupled equation is

solved by the pro
essor group assigned to that (l

1

; l

2

) pair.

Sin
e this is the most 
omputationally intensive step in our

algorithm most of the time in solving the 
oupled equations

is spent in 
omputations that are lo
al to pro
essor groups.

The matrix stru
ture of the un
oupled equations (for a

very small example) is pi
tured in the right-hand side of

Figure 2. The stru
ture of the 
orresponding LU -fa
tors

is shown in the right-hand side of Figure 3. Dire
t LU -

fa
torization of the high-order, �nite di�eren
e matrix will

qui
kly exhaust available time and memory resour
es as we

s
ale up the size of the system. Ultimately, we need to

solve many of these systems simultaneously. Thus we need

a parallel iterative solver to solve the un
oupled equations

with a modest number of pro
essors.

Unfortunately, the ECS transformation, whi
h is ne
es-

sary for simplifying the s
attering boundary 
onditions, 
auses
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Figure 2: Sparsity stru
ture of the �nite di�eren
e

matrix of the two-dimensional Hamiltonian. On the

left is the low-order matrix whi
h uses 3-point for-

mulas for the se
ond derivates. On the right is

the high-order matrix whi
h uses 7-point formulas.

These examples are very small (144 total grid points

extending only to 2a

0

) so that the basi
 stru
ture 
an

be seen.
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Figure 3: Sparsity stru
ture of the LU fa
tors of

the matri
es in Figure 2. The fa
tors U and L are

upper and lower-triangular matri
es, respe
tively.

The sparsity of the sum L+ U is shown here.
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onditioned Conjugate Gradient Squared

Algorithm
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x

(i)

= x

(i�1)
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i

û

r

(i)

= b�Ax

(i)

error = kr

(i)

k

if error < toleran
e exit

end

Figure 4: The pre
onditioned Conjugate Gradient

Squared algorithm based on the one given in [7,

pp.26℄. Matrix M is the pre
onditioner. We de�ne

the arbitrary ve
tor ~r in [7℄ to be the driving term

b. Also the full residual r

(i)

is 
omputed in ea
h it-

eration rather than updating the previous residual.
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Dire
t Solution

fa
torization time: 897 se
onds

solve time: 2.93 se
onds

total time: 937 se
onds

Figure 5: Convergen
e of the CGS algorithm for a

single \un
oupled" equation for three grids whi
h

are real out to di�erent values of R

0

is shown on the

left. The time required for an R

0

= 60a

0


al
ulation

on a single 200Mhz Power3 CPU is shown on the top

right. In this 
ase, the total number of grid points is

88,804. The pre
onditioner is applied twi
e in ea
h

CGS iteration. The time required to solve dire
tly

is shown on the bottom right.

ea
h A

l

1

;l

2

to be very ill-
onditioned. We tested various it-

erative algorithms on small, one-dimensional problems to

see whi
h algorithms are 
ompatible with ECS. Every al-

gorithm that we tried failed to 
onverge for the test prob-

lems without pre
onditioning. Furthermore, using various

standard pre
onditioners failed to 
ause any of these algo-

rithms to 
onverge. We obtained 
onvergen
e only when

we solved linear equations with the lowest order (i.e. three-

point formula) �nite di�eren
e matrix as a pre
onditioning

step in iteratively solving the linear equation for high order

(seven-point formula) �nite di�eren
e. Using low-order �-

nite di�eren
e as a pre
onditioner for solving the high-order

matrix equation 
aused a few of the Krylov subspa
e meth-

ods (CGS, Bi-CGStab, and GMRES) to 
onverge. All had

about the same stability and 
onvergen
e rate. We 
hose to

use the CGS algorithm [7℄, outlined in Figure 4, be
ause it

requires the least amount of memory.

Convergen
e of this iterative algorithm is shown in Fig-

ure 5. The pre
onditioning step is a

omplished by using

SuperLU to dire
tly solve the low-order matrix equation.

Also given is a 
omparison between the time required for

the iterative algorithm and for using SuperLU to dire
tly

solve the high-order matrix equation. As 
an be seen in Fig-

ure 2, the low-order �nite di�eren
e matrix is mu
h sparser.

Therefore, an LU -fa
torization algorithm that takes advan-

tage of the stru
ture of the matrix 
an solve the low-order

equations mu
h more qui
kly than the high order equations.

Why this is so is illustrated by the sparsity patterns of the


orresponding LU fa
tors, shown in Figure 3. The timings

listed in Figure 5 in
ludes a breakdown of the time spent

in di�erent parts of the algorithm. SuperLU 
omputes the

LU -fa
tors for the low-order matrix in mu
h less time than

it takes for the high-order matrix. Even though many tri-

angular solutions using the LU -fa
tors are required, the to-

tal time of the iterative algorithm is about 7% of the time

needed for the dire
t solution.

5.2 SuperLU as preconditioner for uncoupled
equations

A distin
t advantage of the dire
t method is its robustness,

in the sense that it involves a �xed number of 
oating point

operations independent of the 
onditioning. Sparse Gaus-

sian elimination is mu
h harder to parallelize than iterative

methods, mainly be
ause of the �ll-ins in the LU fa
tors.

If we use 
lassi
al partial pivoting, those �ll-ins are gener-

ated on the 
y as fa
torization pro
eeds, whi
h requires dy-

nami
ally adaptive data stru
tures to represent the matrix.

This in
urs prohibitive 
ost on parallel ma
hines be
ause of

many �ne-grained messages. Our novel stati
 pivoting strat-

egy over
omes this diÆ
ulty and maintains numeri
al sta-

bility [14℄. Another 
hallenge to parallelizing this algorithm

is the existen
e of many task dependen
ies among di�erent

elimination steps. We have to exploit as mu
h as possible

the parallelism a
ross multiple steps while preserving these

dependen
ies. We spent mu
h time improving the parallel

fa
torization and triangular solve algorithms.

5.2.1 matrix distribution and parallel algorithms
The matrix partitioning is based on the notion of an un-

symmetri
 supernode, whi
h 
onsists of 
onse
utive 
olumns

of L with the diagonal blo
k being full, and the same nonzero

stru
ture elsewhere. This supernode partition is used as the

blo
k partition in both row and 
olumn dimensions. Figure 6

illustrates su
h a blo
k partition. The P pro
esses are also

arranged as a 2D grid of dimension P

r

� P




= P . We use

2D blo
k-
y
li
 layout, meaning blo
k (I; J) (of L or U) is

mapped onto the pro
ess at 
oordinate ((I � 1) mod P

r

,

(J � 1) mod P




) of the pro
ess grid. In this 2D mapping,

ea
h blo
k 
olumn of L is spread a
ross every pro
essor in

a single 
olumn of the pro
ess grid. For example in Fig-

ure 6, the se
ond blo
k 
olumn of L resides on the 
olumn

pro
esses f1, 4g. Pro
ess 1 only owns two nonzero blo
ks,

whi
h are not 
ontiguous in the global matrix. The advan-

tages of this 2D mapping over a 1D mapping are redu
ed


ommuni
ation, enhan
ed load balan
e and s
alability. The

user 
an set the shape of the pro
ess grid, su
h as 2� 3 or

3�2. The more square the grid, the better the performan
e

expe
ted. This rule of thumb was used in our 
omputations

to de�ne the grid shapes.

The parallel sparse fa
torization algorithm is right-looking

and loosely syn
hronous. At the K-th step, it fa
tors the

K-th blo
k 
olumn of L and the K-th blo
k row of U . Then,

using the outer-produ
t of these two fa
tored blo
k 
olumn

and row, it performs the updates to the trailing submatrix.

All these operations are performed in parallel. The a
tual

implementation uses a pipelined organization and the non-
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Figure 6: SuperLU 2D blo
k-
y
li
 mapping of ma-

trix to pro
essors.

blo
king send and re
eive (MPI Isend/MPI Ire
v) so that

independent tasks a
ross multiple loop iterations are s
hed-

uled simultaneously, thus exploiting better parallelism and

overlaping 
omputation and 
ommuni
ations.

The triangular solve algorithm is fully asyn
hronous and is

based on a sequential variant 
alled \inner produ
t" formu-

lation. The exe
ution of the program is 
ompletely message-

driven. Ea
h pro
ess is in a self-s
heduling loop, perform-

ing appropriate lo
al 
omputation depending on the type of

message re
eived. This approa
h enables large overlap be-

tween 
ommuni
ation and 
omputation and helps over
ome

the mu
h higher 
ommuni
ation to 
omputation ratio in this

phase.

5.2.2 SuperLU performance and scalability
To illustrate the performan
e and s
alability of SuperLU,

we report the results obtained with the high-order systems in

Table 1. The grid sizes were 
hosen so that with in
reasing

number of pro
essors, the number of fa
torization operations

per pro
essor is kept roughly 
onstant. Table 1 lists the

grid sizes, the number of operations, the timings and the

mega
op rate per pro
essor on the Cray T3E-900 (DEC EV-

5 pro
essors, 256 Mbytes memory per pro
essor, 450 MHz


lo
k rate) at NERSC.

For the LU fa
torization, the number of operations is al-

most 
onstant per pro
essor (� 8� 10

9

). The parallel time

in
reases slowly, and mega
op rate per pro
essor de
reases

slowly. The parallel eÆ
ien
y drops slowly but still main-

tains at 50% level even with 64 pro
essors. So the fa
tor-

ization phase s
ales quite well. For the triangular solution,

the number of operations in
reases at a lower rate than the

fa
torization. But the mega
op rate per pro
essor de
reases

more rapidly, meaning the algorithm is less s
alable. This

is be
ause in this phase, there is a higher ratio of 
ommuni-


ation over 
omputation. On the other hand, the triangular

solution time is always less than 4% of the fa
torization time.

5.3 Performancedata foruncoupled equations
The 
omplex-s
aled, 2D Hamiltonian matri
es in our ap-

pli
ation exhibit di�erent SuperLU performan
e 
hara
ter-

isti
s than many other matri
es, su
h as the 3D problems.

Here are our observations:

� The matri
es are very sparse|about 5 nonzeros per

row in a low-order matrix or 13 nonzeros per row in a

high-order matrix, independent of the grid size. Fur-

thermore, the matri
es remain sparse during LU fa
-

torization. The �ll-in growth rate of L + U over the

original A is between 10 and 20 for low-order matri
es

with dimension up to 2 million. Whereas for many 3D

problems, the growth rate 
an be more than an order

of magnitude higher.

� The matrix stru
ture is very irregular in that the dense

blo
ks identi�ed in L and U are very small. Therefore,

more integer indi
es are required to represent the spar-

sity stru
ture, resulting in more indire
t addressing in

the 
omputations.

These properties lead to lower memory usage and possi-

bly faster runtimes, but also lower mega
op rates. Table 2

gives the detailed matrix statisti
s and our solver perfor-

man
e for several largest un
oupled equations (dimension

up to 2 million). For ea
h grid size, we 
ompare the CGS

solution times with SuperLU solving either low-order equa-

tions as pre
onditioner or high-order equations dire
tly. The

average blo
k size is smaller for low-order matrix, and the

fra
tion of integer indi
es (hen
e the amount of indire
t ad-

dressing) is higher. That is why the mega
op rate is mu
h

lower for the low-order matri
es. This is parti
ularly true

for the triangular solves, be
ause there is less 
omputation

but more 
ommuni
ation. Although SuperLU gives a mu
h

better mega
op rate for high-order matri
es in both fa
tor-

ization and triangular solution, the total memory require-

ment is about an order of magnitude larger. Sometimes

dire
t solution of high-order matrix 
an be faster (see the


ase R

0

= 180) be
ause the triangular solution is mu
h more

eÆ
ient and s
alable for the high-order matrix.

For su
h sparse systems, the metri
 for high performan
e


annot be a mere mega
op rate, be
ause there are many un-

avoidable integer operations and indexed loads/stores that

do not use the 
oating point unit. What is important is the

time for solution and the memory usage. Table 3 illustrates

this point. Here, we 
ompare three solvers for problems of

in
reasing size on a single pro
essor. The LAPACK banded

solver delivers the highest mega
op rate, but is the slowest

and most demanding in memory. It uses simple and eÆ
ient

data stru
tures at the expense of storing and operating on

many zero entries in the matrix. Using SuperLU to dire
tly

solve the matrix equation gives slightly redu
ed mega
op

rates, but takes mu
h less time. The iterative solver strikes

a good balan
e between numeri
al eÆ
ien
y and the use of


omputer resour
es, therefore it is the fastest and demands

the least amount of memory, even though it gives the lowest

mega
op rate. Just as important, it in
reases the size of the

problem that we 
an solve with a �xed amount of memory.

Performan
e of our parallel CGS algorithm using SuperLU

on the low-order matrix as pre
onditioning is listed in Ta-

ble 4. The time is broken down into Fa
tor time from Su-

perLU, Iteration time, and Total time. The total time is

the sum of the �rst two plus some set-up time. For these

matri
es, it takes 7 to 8 CGS iterations to 
onverge. Ea
h

iteration requires two triangular solutions from SuperLU,

whi
h a

ounts for a large fra
tion of the iteration time. It

is 
lear that SuperLU fa
torization s
ales quite well, and it


onstitutes a large fra
tion of the total time on smaller num-

bers of pro
essors (up to about 8). For more pro
essors, the

CGS iteration time starts to surpass the fa
torization time,

be
ause the triangular solution algorithm does not s
ale as



Table 1: SuperLU performan
e s
aling with the high-order systems on the CRAY T3E-900.

Npro
s 1 2 4 8 16 32 64

Grid size R

0

= 21 R

0

= 29 R

0

= 39 R

0

= 50 R

0

= 65 R

0

= 80 R

0

= 100

Matrix order 20,164 30,276 45,796 66,564 101,124 142,884 209,764

Nonzeros in A (10

6

) 0.3 0.4 0.6 0.9 1.3 1.8 2.7

Nonzeros in L+ U (10

6

) 6.9 11.5 19.3 31.1 51.6 80.3 128.1

LU Fa
torization

Flops (10

9

) 8.7 17.3 35.1 69.3 134.7 257.6 498.3

Time (se
onds) 28.4 31.9 34.0 35.8 39.9 43.5 52.5

M
ops 307.7 541.6 1031.5 1937.2 3373.5 5921.3 9490.4

M
ops per pro
 307.7 270.8 257.9 242.2 210.8 185.1 148.3

Triangular Solution

Flops (10

6

) 55.9 92.9 156.0 252.0 417.0 648.7 1034.7

Time (se
onds) 0.8 1.0 1.0 1.2 1.2 1.4 1.5

M
ops per pro
 67.8 46.8 39.0 26.4 21.9 14.1 10.4

Table 2: CGS solution of un
oupled equations on 64 pro
essors of the IBM SP at NERSC. SuperLU solves

either the low-order systems as pre
onditioner or the high-order systems dire
tly. \Average blo
k" is the

average number of 
olumns in a dense blo
k, see Figure 6. \%Index" is the per
entage of integer indi
es

used in the 
ompa
t sparse storage over the number of nonzeros in L and U .

Matrix Properties Solver Performan
e

Grid Order Nonzeros Fill-in Average %Index Memory Fa
tor Tri. Solve CGS

size (10

6

) (10

6

) ratio blo
k (MB) se
. (M
ops) se
 (M
ops) time

R

0

= 180

low-ord 0.6 3.0 15 4 12% 844 53.5 (1000) 82.8 (5) 2307.7

high-ord 0.6 7.9 55 8 4% 7149 230.8 (10822) 21.5 (163) 415.0

R

0

= 240

low-ord 1.0 5.2 17 8 8% 1599 81.1 (1431) 60.2 (13) 2116.1

high-ord 1.0 13.4 64 14 3% 14096 1209.3 (5570) 25.6 (271) 2387.6

R

0

= 340

low-ord 2.0 10.0 19 8 8% 3295 188.3 (1792) 371.8 (4) 6361.9

high-ord 2.0 26.1 out of memory

Table 3: Comparison of times in se
onds (and M
ops) to solve a single un
oupled equation using the iterative

algorithm, dire
t solution with SuperLU, and dire
t solution with a banded solver in LAPACK, on a single

200 MHz Power3 CPU.

Grid size 10 20 40 60 80 100

Matrix Order 9,604 19,044 47,524 88,804 142,884 209,764

Banded Solver:

fa
tor 11.7 (568) 44.1 (592) out of

solve 0.29 (78) 0.90 (70) memory

total 12.0 45.0

SuperLU (dire
t):

fa
tor 5.83 (433) 17.0 (460) 76.8 (505) 220 (503) 504 (509)

solve 0.34 (93.8) 0.48 (106) 1.40 (115) 2.93 (118) did not

total 7.63 21.2 91.5 281.5 �nish

CGS + SuperLU:

fa
tor 0.70 (115) 1.55 (153) 4.86 (212) 10.5 (258) 19.6 (288) 33.2 (324)

iteration 2.45 (22) 5.03 (24) 13.0 (26) 24.0 (29) 30.6 (30) 60.5 (30)

total 3.96 8.96 28.4 66.9 138 254



Table 4: The parallel runtimes in se
onds of the pre
onditioned CGS algorithm to solve a single un
oupled

equation of various sizes on the IBM SP at NERSC, with 200 MHz Power3 CPUs.

Grid Matrix Time #Pro
essors

size dimension 1 2 4 6 8 12 16

Fa
tor 42.4 27.1 17.3 14.5 13.3 11.7 10.7

R

0

= 60 88,804 Iter. 24.0 21.7 19.9 19.3 14.3 18.4 23.8

Total 66.9 49.2 37.7 34.2 27.9 30.5 34.8

Fa
tor 192.4 112.9 65.9 51.1 45.1 37.0 31.6

R

0

= 100 209,764 Iter. 60.5 51.3 47.2 48.5 35.5 46.6 53.4

Total 253.9 165.2 114.2 100.5 81.7 84.6 86.1

Fa
tor 852.6 327.3 184.8 142.9 111.8 86.7 73.4

R

0

= 140 381,924 Iter. 155.2 108.1 100.5 104.5 76.0 96.2 130.3

Total 1037.6 437.3 287.1 249.2 189.5 184.7 205.5

Fa
tor 411.4 294.6 257.4 192.1 147.4

R

0

= 180 605,284 Iter. 160.8 161.8 128.2 156.9 203.6

Total 575.1 459.3 388.6 351.7 353.9

well.

6. ITERATIVE SOLUTION TO COUPLED
EQUATIONS

6.1 Parallel implementation
We solve the 
oupled equations (Eq. 6) with an itera-

tive algorithm using solution to un
oupled equations (Eq.

10) as a pre
onditioner. Sin
e a pre
onditioned CGS algo-

rithm worked well in solving the un
oupled equations, we

also use CGS for solving the 
oupled equations. We have

found that 
onvergen
e is reliable in all 
ases of interest

with 
onvergen
e being faster at higher energies where the

diagonal-blo
ks (see Figure 1) are more dominant.

Our basi
 parallelization strategy is to partition the total

number of pro
essors into small subgroups of equal num-

bers (usually four or six) of CPUs. Ea
h subgroup is then

assigned to a parti
ular (l

1

; l

2

) pair. In doing this we exploit

the symmetry relation between (l

1

; l

2

) and (l

2

; l

1

),

 

L

l

2

l

1

(r

2

; r

1

) = (�1)

S

 

L

l

1

l

2

(r

1

; r

2

) ; (11)

by expli
itly storing only the  

L

l

1

l

2

with l

1

� l

2

. In the

iterative algorithm we in
lude the l

1

> l

2

terms impli
itly.

Therefore, the number of pro
essor subgroups is equal to

the number of (l

1

; l

2

) terms kept in the 
oupled equations

with l

1

� l

2

. However, the number of (l

1

; l

2

) blo
ks in the

matrix equation that we are solving may a
tually be as high

as twi
e that number, depending upon the value of L.

The pre
onditioning steps are by far the most time 
on-

suming operations in the algorithm. Sin
e these are just so-

lutions to the un
oupled equations the pre
onditioning steps


onsist of 
al
ulations that are entirely lo
al to ea
h pro
es-

sor subgroup. The pre
onditioner is applied twi
e for ea
h

CGS iteration and is a

omplished by ea
h pro
essor sub-

group implementing the algorithm des
ribed in Se
tion 5.

The se
ond most time-
onsuming operations in the algo-

rithm are matrix-ve
tor multiplies between the diagonal sub-

blo
ks A

l

1

;l

2

and the ve
tors for their 
orresponding  

L

l

1

l

2

.

Again, these operations are entirely lo
al to a pro
essor sub-

group. The only operations that require 
ommuni
ation

between di�erent subgroups are ve
tor operations su
h as

ve
tor-ve
tor adds, diagonal matrix-ve
tor multiplies, and

s
alar-ve
tor multiplies.

6.2 Performance
Typi
ally, we solve 20 separate sets of 
oupled equations

for ea
h 
ollision energy. We must 
al
ulate separate wave

fun
tions for the two spin symmetries (S = 0 and S = 1)

ea
h of these requires solving the 
oupled equations for total

angular momentum quantum numbers ranging from L = 0

to L = 9. The size of ea
h 
al
ulation depends on the size

of the two-dimensional grid used and the number of (l

1

; l

2

)

pairs. As an example, a 
al
ulation for 20 eV 
ollision en-

ergy used a grid that extends to 130a

0

and has 209,764 two-

dimensional grid points. We 
an use a smaller grid for higher

energies while a large grid is required for lower energies. For

a parti
ular energy, the same two-dimensional grid is used

for every  

L

l

1

l

2

.

We in
lude a minimum of six (l

1

; l

2

) pairs in ea
h 
oupled

equation. For L = 0 and L = 1 this is usually suÆ
ient.

With in
reasing L we need to in
lude more terms in the


oupled equations. For L = 6 we typi
aly in
lude 16 (l

1

; l

2

)

pairs. Beyond L = 6 the relative importan
e of individual

 

L

l

1

l

2

to the angular momentum expansion diminishes and

we 
an slightly redu
e the number of (l

1

; l

2

) pairs per 
ou-

pled equation. Higher energies require more (l

1

; l

2

) pairs per


oupled equation, as many as 24 in our 
al
ulations.

In Figure 7 we present examples of the 
onvergen
e of the

iterative algorithm for solving the 
oupled equations. The

behavior that we typi
ally see is that the error in the 
om-

puted residual in
reases during the �rst few iterations, but

then de
reases fairly steadily. The rate of 
onvergen
e is

dependent upon a number of fa
tors: the number of (l

1

; l

2

)

pairs, the total energy, and the quantum number L. For suf-

�
ient numbers of (l

1

; l

2

) pairs the 
onvergen
e rate depends

sublinearly on the number of in
luded pairs. Whenever we

list the number of (l

1

; l

2

) pairs for a given 
oupled equation

we are only 
ounting those for whi
h l

1

� l

2

so the a
tual

number of terms in the 
oupled equation 
ould be higher by

as mu
h as a fa
tor of two, depending upon the value of L.

The energy being 
onsidered also a�e
ts the rate of 
on-

vergen
e. For higher energies, the 
oupling between di�erent

 

L

l

1

l

2

is relatively weak and the iterative algorithm 
onverges

more rapidly than at lower energies. The two energies used

as examples in Figure 7 represent the extremes of this de-

penden
e. In the 
ase of 54.4 eV 
ollision energy, the highest

that we have 
onsidered, the 
oupled equations always 
on-

verge within a dozen CGS iterations. The lowest 
ollision
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Figure 7: Convergen
e of the CGS algorithm for

the 
oupled equations with singlet spin symmetry

for various total angular momenta L. Error of the


al
ulated s
attered wave is plotted for 
ollision en-

ergies of 15.6 eV (squares) and 54.4 eV (diamonds).

For ea
h L the number of blo
ks in
luded, 
ounting

only those with l

1

� l

2

, is listed.

energy we have 
onsidered is 15.6 eV, just 2 eV above the

ionization threshold. At this energy the 
onvergen
e rate is

mu
h slower and more dependent on L than at the higher

energy. We have found that the present algorithm some-

times fails to 
onverge for 
ollisions energies within about 1

eV above the ionization threshold.

In our produ
tion runs we use the smallest number of

pro
essors per (l

1

; l

2

) pair, usually four, that will solve an

un
oupled equation in a reasonable amount of time. This is

a prudent management of resour
es be
ause the solve step

using the LU fa
tors 
omputed by SuperLU does not s
ale

well. In our two-level iterative algorithm the SuperLU solve

step is exe
uted hundreds of times. From Figure 7 we see the

number of outer CGS iterations ranges from 12 to 35. Sin
e

ea
h CGS iteration requires two pre
onditioning steps, 24 to

70 solutions of ea
h un
oupled equation are required to solve

one 
oupled equation. Ea
h un
oupled equation solution

typi
ally require 8 CGS iterations for a total of 16 SuperLU
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Figure 8: Equal-energy sharing, 
oplanar TDCS for

25 eV in
ident energy with �

12

�xed. Internormal-

ized measurements [22℄, originally reported in arbi-

trary units, were multiplied by 0.16 to �t 
al
ulated


ross se
tion. Solid and dashed 
urves represent two

di�erent methods of 
al
ulating the TDCS [5,4℄ .

solves. Thus, between 384 and 1120 SuperLU solves for ea
h

(l

1

; l

2

) pair are used to 
onverge a set of 
oupled equations.

The total number of pro
essors used s
ales dire
tly with

the size of the system and is four times the number of (l

1

; l

2

)

blo
ks, ranging from 24 to 96. Using the example of a

209,764 point grid we are solving for between 1.2 million

and 5 million double pre
ision, 
omplex numbers for ea
h


oupled equation. The a
tual dimension of the linear system

being solved iteratively may be as high as twi
e that number.

Produ
tion runs generally take 2 to 3 minutes per iteration

on an IBM SP with 200 MHz Power 3 CPUs. Taking into

a

ount the set-up time for 
omputing the LU fa
tors and

the extremely variable number of iterations required the to-

tal time for solving a 
oupled equation ranges from 30 to

500 minutes on the SP. The longer runs are generally a
-


omplished in multiple stages. Our 
odes are written so

that the solution ve
tors are periodi
ally saved during the

iterative algorithm. If 
onvergen
e has not been rea
hed

within pre-determined limits, or if a system 
rash o

urs

before 
ompletion, the iterative algorithm is restarted using

the last solution that was saved.

7. SCIENTIFIC RESULTS
The real signi�
an
e of our work lies in the s
ienti�
 a
-


omplishment. Our results represent the �rst truly 
omplete

solution of the ele
tron-impa
t ionization problem. This

would not have been possible without modern, s
alable nu-

meri
al algorithms, su
h as SuperLU, and massively parallel


omputers, su
h as the Cray T3E and the IBM SP. With

these tools we were able to implement the exterior 
om-

plex s
aling formalism on a s
ale large enough to produ
e

a

urate and detailed di�erential 
ross se
tions for ele
tron-



Figure 9: Real part of an example radial fun
tion. In this example l

1

= l

2

so the radial fun
tion is symmetri


about r

1

= r

2

.

impa
t ioniztion.

A 
omparison between some of our 
al
ulated di�erential


ross se
tions and the 
orresponding experimental data is

shown in Figure 8. More 
omplete sets of results have been

published elsewhere [21, 4, 13, 5℄. This experimental data

is available only in arbitrary units so the entire set of data

must be multiplied by a single normalization fa
tor whi
h

was 
hosen based on 
omparison with our 
al
ulations. Even

so, agreement in shape between our 
al
ulations and the

experiment is a remarkable testimony to the a

ura
y of

our 
al
ulated results. However, our goal was not just to

reprodu
e the experimental data. The experiments are very

diÆ
ult and only a very limited set of data exists [22℄, most

of whi
h is available only in arbitrary units. Ultimately,

a 
omplete des
ription of ele
tron-impa
t ionization must


ome from a theoreti
al treatment.

The 
omputationally intensive part of this endeavor was


al
ulating the wave fun
tion using the algorithm des
ribed

in the pre
eding parts of this paper. An example of one

of the two-dimensional radial fun
tions used to 
onstru
t

the wave fun
tion is shown in Figure 9. Although an in-

termediate step in the pro
ess of 
al
ulating the 
ross se
-

tions, the 
al
ulated wave fun
tions, themselves, represent

a signi�
ant s
ienti�
 a
heivement. Never before has a fully


onverged wave fun
tion that des
ribes two outgoing ele
-

trons been 
al
ulated out to su
h large distan
es. These

wave fun
tions will assist s
ientists in better understanding

the 
omplex dynami
s of ele
tron-impa
t ionization as they

seek to develop theoreti
al and numeri
al methods appro-

priate for more 
omplex systems.
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