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ABSTRACT
A omplete desription of two outgoing eletrons following

an ionizing ollision between a single eletron and an atom

or moleule has long stood as one of the unsolved funda-

mental problems in quantum ollision theory. In this paper

we desribe our use of distributed memory parallel omput-

ers to alulate a fully onverged wave funtion desribing

the eletron-impat ionization of hydrogen. Our approah

hinges on a transformation of the Shr�odinger equation that

simpli�es the boundary onditions but requires solving very

ill-onditioned systems of a few million omplex, sparse lin-

ear equations. We developed a two-level iterative algorithm

that requires repeated solution of sets of a few hundred thou-

sand linear equations. These are solved diretly by LU -

fatorization using a speially tuned, distributed memory

parallel version of the sparse LU -fatorization library Su-

perLU. In smaller ases, where diret solution is tehnially

possible, our iterative algorithm still gives signi�ant savings

in time and memory despite lower megaop rates.

1. INTRODUCTION
This paper desribes our use of massively parallel pro-

essing (MPP) omputers to solve a long-standing, funda-

mental problem in atomi physis. Our work produed the

�rst alulations of detailed information about two outgoing

eletrons following an ionizing ollision between an eletron

and a hydrogen atom that agree with experiment over a wide

range of energies and angles [21, 4, 5, 13℄. We alulate a six-

dimensional wave funtion by solving the time-independent

Shr�odinger equation using a mathematial transformation

to simplify the sattering boundary onditions. This re-
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quires solving several large (on the order of 1.2 to 8 million)

sets of omplex, sparse linear equations that are very ill-

onditioned.

For this we developed a speialized, two-level iterative al-

gorithm. As a preonditioning step in iteratively solving the

full set of equations we repeatedly solve moderately large

sets (between 209,764 and 334,084) of omplex, sparse lin-

ear equations. These, in turn, are solved iteratively using

the diret solution of a simpler set of equations as a preon-

ditioner. To aomplish the inner preonditioning step we

use a parallel version of the sparse LU -fatorization library

SuperLU [11, 14℄ with enhaned apabilities to handle om-

plex data types and to solve multiple independent systems

simultaneously on separate groups of proessors. Our odes

are written in Fortran 90 and C using MPI for ommunia-

tion and have been used on a Cray T3E-900 and an IBM

SP.

The sienti� breakthrough ould not have been ahieved

without our newly developed algorithms and parallel pro-

essing apabilities outlined below:

� A new mathematial transformation for solving the

time-independent Shr�odinger equation makes the nu-

merial omputational task feasible.

� A non-onventional, parallel, two-level iterative algo-

rithm for solving omplex linear systems that are very

large, sparse and ill-onditioned. In partiular, our

parallel preonditioner using SuperLU is ruial for

onvergene.

� Demonstrated high performane in solving systems of

equations as large as 8 million taking between 40 and

140 minutes and using up to 96 proessors.

The rest of the paper is organized as follows. In Se-

tion 2, we disuss the sienti� appliation, the obstales to

performing aurate alulation, and survey the earlier at-

tempts in solving this problem. Setion 3 desribes our new

mathematial formulation for this problem and the resulting

sparse linear systems. One major ontribution is a simpli-

�ed fomulation of the sattering boundary onditions that

make the omputational tasks tratable. Setion 4 gives an

overview of our parallel solver strategy and ompares with

some other solution tehniques. Setion 5 disusses the it-

erative algorithm and performane for the unoupled equa-

tions, and the preonditioner in partiular. Solutions of the

unoupled equations are used as preonditioning to solve

the fully oupled equations, the details of whih are given



in Setion 6. Finally, in Setion 7 we highlight the sienti�

results obtained through this omputation.

2. SCIENTIFIC APPLICATION
If the ollision between a target atom (or moleule) and an

eletron is of suÆiently high energy then there is some prob-

ability that the ollision will result in detahing an eletron,

originally bound to the target. This proess is known as

eletron-impat ionization and is haraterized by an initial

state with a single eletron inident on the target followed

by a �nal state with two eletrons outgoing from the ionized

target. The two-outgoing eletrons make eletron-impat

ionization muh more diÆult to treat than other eletron-

sattering events, suh as exitation of the target and elasti

sattering, that have only one outgoing eletron in the �nal

state. A omplete theoretial desription of eletron-impat

ionization requires the solution of a three-body problem in

quantum mehanis that is further ompliated by the exis-

tane of long-range, Coulomb interations between all three

partiles in the �nal state.

Eletron-impat ionization is one of the most basi phe-

nomena in low-energy ollision physis. It is the fundamen-

tal mehanism for ion formation in mass spetrosopy and

is responsible for forming and sustaining low-temperature

plasmas that are used in appliations ranging from uores-

ent lighting to the proessing of silion hips. A better un-

derstanding of this basi phenomenon will lead to the abil-

ity to better understand and model marosopi phenom-

ena in low-temperature plasmas that are important in the

atmospheri sienes, astrophysis, and a variety of indus-

trial appliations. Despite its importane, it is only reently

that, with the aid of MPP, we have ahieved what ould be

onsidered a omplete desription of eletron-impat ioniza-

tion of the simplest atomi target { a ground state hydrogen

atom.

Probabilities for ollision events are traditionally expressed

in units of area and are referred to as ross setions. The

ionization ross setion, then, gives the probability that an

atom will be ionized by ollision with an eletron at a par-

tiular inident energy. A omplete theoretial desription

means alulating di�erential ross setions that give prob-

ability distributions for the �nal energies and diretions of

both outgoing eletrons. The primary obstale to doing this

is the diÆulty in formulating the orret sattering bound-

ary onditions for the two outgoing eletrons. Muh of the

work on the mathematial theory of ionization, beginning in

the 1960s [18, 23℄, has been in developing asymptoti forms

of the wave funtion. So far, no suh asymptoti that ould

be used in an atual alulation have been developed.

The leading approahes to treating eletron-atom sat-

tering above the ionization threshold have been attempts

to extend lose-oupling formalisms, whih work well for

two-body proesses suh as disrete exitations of the atom

and elasti sattering, to the three-body problem of ioniza-

tion [10, 8℄. The most suessful of these, the onvergent

lose-oupling method has produed aurate total ioniza-

tion ross setions, but failed to onverge to the orret

di�erential ross setions [9℄. Other approahes are based

on various approximations that limit their usefulness, when

they work at all, to very spei� geometries [17, 25℄. One

method that has reently been shown to be apable of pro-

duing orret di�erential ross setions for ionization [6℄ in-

volves propagation of the time-dependent Shr�odinger equa-

tion [19℄. However, this method is very omputationally in-

tensive and has yet to produe onverged results.

Our approah builds on the early, formal theory but ob-

viates the need to speify the exat sattering boundary

onditions by using a mathematial transformation of the

Shr�odinger equation. Although this transformation makes

the boundary onditions tratable, its implementation re-

quires solving very large sets of omplex, sparse linear equa-

tions. Furthermore, the systems are very ill-onditioned. By

developing speialized algorithms for solving these systems

of equations on distributed memory, parallel superomput-

ers we have ahieved the ability to alulate arbitrarily au-

rate, time-independent wave funtions desribing eletron-

hydrogen sattering above the ionization threshold. From

these wave funtions we an extrat any di�erential ross

setion for ionization providing, for the �rst time, a om-

plete desription of eletron-impat ionization.

3. MATHEMATICAL FORMALISM

3.1 Differential equation
There are no expliitly time dependent interations so the

system an be desribed by a wave funtion 	

+

that is a

solution to the time-independent Shr�odinger equation,

H	

+

= E	

+

; (1)

where E is the total energy of the system and H is the Hamil-

tonian desribing the interation of two eletrons with eah

other and with the nuleus. The nuleus is assumed to be in-

�nitely massive and �xed in spae so 	

+

is a six-dimensional

funtion of the oordinates (r

1

and r

2

) for the two eletrons

relative to the nuleus. As a �rst step in orretly treat-

ing the boundary onditions of 	
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we partition it into two

terms,
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whih is either symmetri (for total spin S = 0) or anti-

symmetri (S = 1) with respet to interhange of the ele-

trons' oordinates. The remaning term, 	

+

s

, is referred to as

the sattered wave and ontains all of the sattering infor-

mation in its asymptoti (large distanes) limit. Although

the asymptoti form of 	

+

s

still annot be stated expliitly

we do know that at large distanes 	

+

s

is a purely outgo-

ing wave. The sattered wave is alulated by solving the

inhomogeneous di�erential equation
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that omes from rearrangement of the Shr�odinger equation,

with outgoing wave boundary onditions on 	

+

s

.

3.2 Angular momentum expansion
The six-dimensional di�erential equation in Eq. 4 is on-

verted to sets of oupled two-dimensional di�erential equa-

tions by expanding the wave funtion in terms of oupled

spherial harmonis Y
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). Like ordinary spherial

harmonis, the Y

L0
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2

are orthonormal funtions of the an-

gular variables. They are labeled by the total angular mo-

mentum quantum number L and the single-eletron angular



momentum quantum numbers l
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and l

2

. To alulate 	
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s
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then need to evaluate the two-dimensional radial funtions
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The angular momentum expansion of the right-hand side of

Eq. 4 is known analytially.

Substituting the expansions of 	

+

s

and 	

0

k

i

into Eq. 4

leads to sets of oupled, two-dimensional di�erential equa-

tions
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where the �
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are the radial funtions from the expansion

of the right-hand side of Eq. 4, the hl

1

l

2

jjl
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1
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L

are two-

dimensional oupling potentials arising from the eletron-

eletron interation, and the H

l

are the one-dimensional,

Coulomb radial Hamiltonians
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Sine total angular momentum is a onserved quantity there

is a separate set of oupled equations for eah value of the

quantum number L.

3.3 Simplifying the boundary conditions
The key element in our formalism is the exterior omplex

saling transformation that simpli�es the sattering bound-

ary onditions for eah of the  

L

l

1

l

2

. Formally, the  

L

l

1

l

2

are

zero along the oordinate axes (r

1

= 0 or r

2

= 0) but for

large distanes they are unbounded, osilatory funtions. In

the absene of ionization the boundary onditions for large

distanes an be treated by mathing to known asymptoti

forms. No suh usable asymptoti form is known for ioniza-

tion.

We avoid having to expliitly speify the asymptoti form

for ionization by alulating the  

L

l

1

l

2

on a omplex ontour

[20, 16℄. This transformation of the Shr�odinger equation,

alled exterior omplex saling (ECS), was invented by Si-

mon [24℄ to study moleular resonanes in sattering theory.

Both radial oordinates are rotated into the upper half of the

omplex plane beyond some distane R

0

. This oordinate

mapping,

r !
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;
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)e
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(8)

(where 0 < � < �=2) de�nes a box between zero and R

0

in

r

1

and r

2

where both oordinates are real. Outside of that

box at least one oordinate is omplex. The e�et of suh

a oordinate transformation on a purely outgoing wave is

to transform it into a exponentially deaying funtion be-

yond R

0

. An example of a  

L

l

1

l

2

alulated with the ECS

transformation is shown in Figure 9. The alulated  

L
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1

l
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are idential to the unsaled  

L
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inside the interior box

but deay exponentially for either r

1

or r

2

greater than R

0

.

Thus, ECS simpli�es the sattering boundary onditions so

that the transformed  
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satisfy Dirihlet boundary on-

ditions.
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Figure 1: Blok-matrix struture of the oupled

equations (Equation 6) using L = 0 as an exam-

ple. The d

l

1

;l

2

are diagonal matries and the A

l;l

are sparse, not diagonal, matries.

3.4 The matrix problem
We solve the oupled equations in Eq. 6 for the  

L

l

1

l

2

on a

two-dimensional radial grid using �nite di�erene to approx-

imate the derivatives. This results in a large linear system

with a blok-matrix struture illustrated in Figure 1. The

dimension of eah blok is the number of grid points, and

the number of bloks is the number of partial wave terms re-

tained in the oupled equations. The matrix is omplex non-

Hermitian and non-symmetri. The right-hand side vetor

is formed from the values of eah of the �

L

l

1

l

2

stored on-

tiguously. Likewise, the solution vetor is partitioned so

that individual segments store the values of the orrespond-

ing  

L

l

1

l

2

. The ordering of the (l

1

; l

2

) pairs is determined

for eah value of L by guessing the relative importane of

the individual terms in the angular momentum expansion in

Eq. 5.

Diagonal bloks, A
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, are matrix representations of the

two-dimensional operator,
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Eah A
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1

;l
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has the sparsity struture of a two-dimensional,

sixth-order (7-point formulas for eah seond derivative), �-

nite di�erene Laplaian. The exat struture of the di-

agonal bloks is shown on the right-hand side of Figure 2.

The A

l

1

;l

2

are omplex, non-Hermitian beause of the ECS

transformation and they are non-symmetri beause of the

high-order �nite di�erene formulas. The o�-diagonal bloks

are diagonal matries representing the oupling potentials
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In order to obtain an aurate desription of ionization

we alulate the  

L

l

1

l

2

out to distanes of at least R

0

= 80a

0

for higher energies and R

0

= 140a

0

for lower energies. One

a

0

= 5:29 � 10

�11

meters is the radius of a hydrogen atom

in its ground state. The primary grid spaings range from

0:2a

0

to 0:3a

0

. However, at small distanes the grid spaing

is 0:05a

0

beause of the singularity in the Coulomb poten-

tial. The grids typially extend beyond R

0

about 25a

0

. In

this region the  

L

l

1

l

2

are exponentially deaying funtions

and larger grid spaings may be used. The number of grid

points (in one dimension) used in our alulations ranges be-

tween 458 and 578 so the dimension of the individual bloks

in Figure 1 ranges between 209,764 and 334,084. By using

7-point �nite di�erene formulas we an alulate the  

L

l

1

l

2

very aurately on grids omposed of sub-regions with uni-



form grid spaing. This is partiularly important when using

the ECS transformation given in Eq. 8 whih requires that

the �nite di�erene formulas be generalized so that the grid

\spaings" are omplex beyond R

0

. The number of bloks in

the matrix equation illustrated in Figure 1 is determined by

the number of (l

1

; l

2

) pairs kept in the angular momentum

expansion (Eq. 5) for a partiular value of L. Typially, the

number of bloks ranges between 6 (for L = 0) and 24 (for

higher L). Thus, for a single set of oupled equations the

size of the system of omplex, linear equations that we solve

an be as large as 8 million.

4. OVERVIEW OFTHEPARALLELALGO-
RITHMS

Beause of the size of the matrix (dimension up to 8 mil-

lion), we need to use an iterative algorithm for the linear

systems. We devloped a two-level, iterative algorithm for

solving the sets of oupled di�erential equtions. Here we

give an overview of the algorithm and our parallelization

strategy. The detailed algorithms and performane appear

in Setions 5 and 6. Sine there is no oupling between  

L

l

1

l

2

with di�erent values of the quantum number L, there is an

independent set of oupled equations for eah L. Rather

than having an \embarrassingly parallel" omponent of our

algorithm we solve the oupled equations for eah L indepen-

dently. Thus, our two-level, parallel algorithm is designed

to solve a single set of oupled equations for some value of

L.

The �rst level of our algorithm is based on the blok-

matrix representation of the oupled equations illustrated in

Figure 1. We solve the oupled equations iteratively using

solution to the unoupled equations as a blok-Jaobi pre-

onditioner. Eah diagonal blok in Figure 1 is the matrix

for one of the unoupled equations (i.e. with hl

1

l

2

jjl
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1

l

0

2

i

L

= 0

for (l

1

; l
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) 6= (l
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; l
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)).

We also use an iterative algorithm for solving the unou-

pled equations whih are themselves large linear systems of

equations. This inner iteration level aounts for the bulk

of the omputational work. For the preonditioning step in

the inner iteration we use a diret solver to solve the equa-

tions that have the same dimension but are more sparse than

the original matrix. For our appliation, the key advantage

of using the iterative algorithm for solving eah unoupled

equation, ompared with using a diret solver, is that muh

less memory is required for storing the LU -fators of the pre-

onditioner than storing the fators of the original matrix.

Beause of the memory savings we an use a smaller number

of proessors per (l

1

; l

2

) pair in the oupled equations.

Sparse diret solvers are muh harder to parallelize, a task

muh too involved for an appliation programmer to spend

time on. In reent years, some new algorithms and software

pakages have emerged whih exploit new arhitetural fea-

tures, suh as memory hierarhy and parallelism. Examples

of publially available, parallel unsymmetri solvers inlude

MUMPS [1℄ (multifrontal algorithm), SPOOLES [3℄ (left-

looking algorithm), SuperLU [14℄ (right-looking algorithm),

and WSMP [12℄ (multifrontal algorithm). WSMP is tuned

partiularly for the IBM SP arhiteture, however, it only

has support for shared memory parallelism. MUMPS does

not have support for omplex matries. In a separate work,

we ompared MUMPS and SuperLU only for the real matri-

es on the Cray T3E, up to 512 proessors. SuperLU often

uses less memory and sales better, and MUMPS is usually

faster on smaller number of proessors. See [2℄ for detailed

omparison results. For our appliation, SuperLU seems to

be the only hoie beause of support for both omplex ma-

tries and distributed memory mahines.

In solving these subsystems using SuperLU, we �rst re-

order the equations and variables using a minimum degree

algorithm [15℄, applied on the graph of A

T

+A, to redue the

�ll-ins in the LU -fators. In the initial stage of the develop-

ment, we also experimented with nested dissetion ordering

applied on A

T

+A, but the �ll redution is not better than

using minimum degree ordering for our 2D meshes. So we

did not pursue that any further.

The blok-matrix struture (see Figure 1) provides a natu-

ral, \oarse" level of parallelism. We divide the total number

of proessors into proessor subgroups of equal size. Eah

subgroup is assigned to a partiular (l

1

; l

2

) pair. Therefore,

the number of proessor subgroups sales diretly with the

number of terms (for a partiular L) that are kept in the an-

gular momentum expansion given in Eq. 5. The bulk of the

omputations, suh as solving individual unoupled equa-

tions, are then loal to individual subgroups. We typially

use four proessors for eah subgroup. In the ase of the

Cray T3E-900, on whih these odes were initially devel-

oped, this was the minimum number of nodes required for

solving a single unoupled equations beause of memory lim-

itations. On newer mahines suh as NERSC's urrent IBM

SP it is possible to solve the same unoupled equations with

fewer proessors, but we still �nd that using four proessors

per subgroup strikes a good balane between absolute time

and eÆieny.

5. UNCOUPLED EQUATIONS AS PRECON-
DITIONER

5.1 Solving the uncoupled equations
Our iterative algorithm for solving the oupled equations

in Eq. 6 requires solution to unoupled equations, de�ned

by setting hl

1

l

2

jjl

0

1

l

0

2

i

L

= 0 for (l

1

; l

2

) 6= (l

0

1

; l

0

2

), that have

the form

A

l

1

;l

2

x

L

l

1

;l

2

= b

L

l

1

;l

2

; (10)

where A

l

1

;l

2

is shown in Eq. 9. Even for a single unoupled

equation the dimension of the linear system an be very

large, up to 334,084 in prodution runs and more than 2

million for testing purposes. Eah unoupled equation is

solved by the proessor group assigned to that (l

1

; l

2

) pair.

Sine this is the most omputationally intensive step in our

algorithm most of the time in solving the oupled equations

is spent in omputations that are loal to proessor groups.

The matrix struture of the unoupled equations (for a

very small example) is pitured in the right-hand side of

Figure 2. The struture of the orresponding LU -fators

is shown in the right-hand side of Figure 3. Diret LU -

fatorization of the high-order, �nite di�erene matrix will

quikly exhaust available time and memory resoures as we

sale up the size of the system. Ultimately, we need to

solve many of these systems simultaneously. Thus we need

a parallel iterative solver to solve the unoupled equations

with a modest number of proessors.

Unfortunately, the ECS transformation, whih is nees-

sary for simplifying the sattering boundary onditions, auses
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Figure 2: Sparsity struture of the �nite di�erene

matrix of the two-dimensional Hamiltonian. On the

left is the low-order matrix whih uses 3-point for-

mulas for the seond derivates. On the right is

the high-order matrix whih uses 7-point formulas.

These examples are very small (144 total grid points

extending only to 2a

0

) so that the basi struture an

be seen.
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Figure 3: Sparsity struture of the LU fators of

the matries in Figure 2. The fators U and L are

upper and lower-triangular matries, respetively.

The sparsity of the sum L+ U is shown here.

Preonditioned Conjugate Gradient Squared

Algorithm

Start with initial guess x

(0)

Compute r

(0)

= b�Ax

(0)

for i = 1 to max iterations

�

i�1

= b

T

r

(i�1)

if �

i�1

= 0 method fails

if i = 1 then

u

(1)
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else
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(i)
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+ �
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+ �
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(i�1)

�

endif

solve Mp̂ = p

(i)

v̂ = Ap̂

�

i

= �

i�1

=b

T

v̂

q

(i)

= u

(i)

� �

i

v̂

solve Mû = u

(i)

+ q

(i)

x

(i)

= x

(i�1)

+ �

i

û

r

(i)

= b�Ax

(i)

error = kr

(i)

k

if error < tolerane exit

end

Figure 4: The preonditioned Conjugate Gradient

Squared algorithm based on the one given in [7,

pp.26℄. Matrix M is the preonditioner. We de�ne

the arbitrary vetor ~r in [7℄ to be the driving term

b. Also the full residual r

(i)

is omputed in eah it-

eration rather than updating the previous residual.
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Diret Solution

fatorization time: 897 seonds

solve time: 2.93 seonds

total time: 937 seonds

Figure 5: Convergene of the CGS algorithm for a

single \unoupled" equation for three grids whih

are real out to di�erent values of R

0

is shown on the

left. The time required for an R

0

= 60a

0

alulation

on a single 200Mhz Power3 CPU is shown on the top

right. In this ase, the total number of grid points is

88,804. The preonditioner is applied twie in eah

CGS iteration. The time required to solve diretly

is shown on the bottom right.

eah A

l

1

;l

2

to be very ill-onditioned. We tested various it-

erative algorithms on small, one-dimensional problems to

see whih algorithms are ompatible with ECS. Every al-

gorithm that we tried failed to onverge for the test prob-

lems without preonditioning. Furthermore, using various

standard preonditioners failed to ause any of these algo-

rithms to onverge. We obtained onvergene only when

we solved linear equations with the lowest order (i.e. three-

point formula) �nite di�erene matrix as a preonditioning

step in iteratively solving the linear equation for high order

(seven-point formula) �nite di�erene. Using low-order �-

nite di�erene as a preonditioner for solving the high-order

matrix equation aused a few of the Krylov subspae meth-

ods (CGS, Bi-CGStab, and GMRES) to onverge. All had

about the same stability and onvergene rate. We hose to

use the CGS algorithm [7℄, outlined in Figure 4, beause it

requires the least amount of memory.

Convergene of this iterative algorithm is shown in Fig-

ure 5. The preonditioning step is aomplished by using

SuperLU to diretly solve the low-order matrix equation.

Also given is a omparison between the time required for

the iterative algorithm and for using SuperLU to diretly

solve the high-order matrix equation. As an be seen in Fig-

ure 2, the low-order �nite di�erene matrix is muh sparser.

Therefore, an LU -fatorization algorithm that takes advan-

tage of the struture of the matrix an solve the low-order

equations muh more quikly than the high order equations.

Why this is so is illustrated by the sparsity patterns of the

orresponding LU fators, shown in Figure 3. The timings

listed in Figure 5 inludes a breakdown of the time spent

in di�erent parts of the algorithm. SuperLU omputes the

LU -fators for the low-order matrix in muh less time than

it takes for the high-order matrix. Even though many tri-

angular solutions using the LU -fators are required, the to-

tal time of the iterative algorithm is about 7% of the time

needed for the diret solution.

5.2 SuperLU as preconditioner for uncoupled
equations

A distint advantage of the diret method is its robustness,

in the sense that it involves a �xed number of oating point

operations independent of the onditioning. Sparse Gaus-

sian elimination is muh harder to parallelize than iterative

methods, mainly beause of the �ll-ins in the LU fators.

If we use lassial partial pivoting, those �ll-ins are gener-

ated on the y as fatorization proeeds, whih requires dy-

namially adaptive data strutures to represent the matrix.

This inurs prohibitive ost on parallel mahines beause of

many �ne-grained messages. Our novel stati pivoting strat-

egy overomes this diÆulty and maintains numerial sta-

bility [14℄. Another hallenge to parallelizing this algorithm

is the existene of many task dependenies among di�erent

elimination steps. We have to exploit as muh as possible

the parallelism aross multiple steps while preserving these

dependenies. We spent muh time improving the parallel

fatorization and triangular solve algorithms.

5.2.1 matrix distribution and parallel algorithms
The matrix partitioning is based on the notion of an un-

symmetri supernode, whih onsists of onseutive olumns

of L with the diagonal blok being full, and the same nonzero

struture elsewhere. This supernode partition is used as the

blok partition in both row and olumn dimensions. Figure 6

illustrates suh a blok partition. The P proesses are also

arranged as a 2D grid of dimension P

r

� P



= P . We use

2D blok-yli layout, meaning blok (I; J) (of L or U) is

mapped onto the proess at oordinate ((I � 1) mod P

r

,

(J � 1) mod P



) of the proess grid. In this 2D mapping,

eah blok olumn of L is spread aross every proessor in

a single olumn of the proess grid. For example in Fig-

ure 6, the seond blok olumn of L resides on the olumn

proesses f1, 4g. Proess 1 only owns two nonzero bloks,

whih are not ontiguous in the global matrix. The advan-

tages of this 2D mapping over a 1D mapping are redued

ommuniation, enhaned load balane and salability. The

user an set the shape of the proess grid, suh as 2� 3 or

3�2. The more square the grid, the better the performane

expeted. This rule of thumb was used in our omputations

to de�ne the grid shapes.

The parallel sparse fatorization algorithm is right-looking

and loosely synhronous. At the K-th step, it fators the

K-th blok olumn of L and the K-th blok row of U . Then,

using the outer-produt of these two fatored blok olumn

and row, it performs the updates to the trailing submatrix.

All these operations are performed in parallel. The atual

implementation uses a pipelined organization and the non-
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Figure 6: SuperLU 2D blok-yli mapping of ma-

trix to proessors.

bloking send and reeive (MPI Isend/MPI Irev) so that

independent tasks aross multiple loop iterations are shed-

uled simultaneously, thus exploiting better parallelism and

overlaping omputation and ommuniations.

The triangular solve algorithm is fully asynhronous and is

based on a sequential variant alled \inner produt" formu-

lation. The exeution of the program is ompletely message-

driven. Eah proess is in a self-sheduling loop, perform-

ing appropriate loal omputation depending on the type of

message reeived. This approah enables large overlap be-

tween ommuniation and omputation and helps overome

the muh higher ommuniation to omputation ratio in this

phase.

5.2.2 SuperLU performance and scalability
To illustrate the performane and salability of SuperLU,

we report the results obtained with the high-order systems in

Table 1. The grid sizes were hosen so that with inreasing

number of proessors, the number of fatorization operations

per proessor is kept roughly onstant. Table 1 lists the

grid sizes, the number of operations, the timings and the

megaop rate per proessor on the Cray T3E-900 (DEC EV-

5 proessors, 256 Mbytes memory per proessor, 450 MHz

lok rate) at NERSC.

For the LU fatorization, the number of operations is al-

most onstant per proessor (� 8� 10

9

). The parallel time

inreases slowly, and megaop rate per proessor dereases

slowly. The parallel eÆieny drops slowly but still main-

tains at 50% level even with 64 proessors. So the fator-

ization phase sales quite well. For the triangular solution,

the number of operations inreases at a lower rate than the

fatorization. But the megaop rate per proessor dereases

more rapidly, meaning the algorithm is less salable. This

is beause in this phase, there is a higher ratio of ommuni-

ation over omputation. On the other hand, the triangular

solution time is always less than 4% of the fatorization time.

5.3 Performancedata foruncoupled equations
The omplex-saled, 2D Hamiltonian matries in our ap-

pliation exhibit di�erent SuperLU performane harater-

istis than many other matries, suh as the 3D problems.

Here are our observations:

� The matries are very sparse|about 5 nonzeros per

row in a low-order matrix or 13 nonzeros per row in a

high-order matrix, independent of the grid size. Fur-

thermore, the matries remain sparse during LU fa-

torization. The �ll-in growth rate of L + U over the

original A is between 10 and 20 for low-order matries

with dimension up to 2 million. Whereas for many 3D

problems, the growth rate an be more than an order

of magnitude higher.

� The matrix struture is very irregular in that the dense

bloks identi�ed in L and U are very small. Therefore,

more integer indies are required to represent the spar-

sity struture, resulting in more indiret addressing in

the omputations.

These properties lead to lower memory usage and possi-

bly faster runtimes, but also lower megaop rates. Table 2

gives the detailed matrix statistis and our solver perfor-

mane for several largest unoupled equations (dimension

up to 2 million). For eah grid size, we ompare the CGS

solution times with SuperLU solving either low-order equa-

tions as preonditioner or high-order equations diretly. The

average blok size is smaller for low-order matrix, and the

fration of integer indies (hene the amount of indiret ad-

dressing) is higher. That is why the megaop rate is muh

lower for the low-order matries. This is partiularly true

for the triangular solves, beause there is less omputation

but more ommuniation. Although SuperLU gives a muh

better megaop rate for high-order matries in both fator-

ization and triangular solution, the total memory require-

ment is about an order of magnitude larger. Sometimes

diret solution of high-order matrix an be faster (see the

ase R

0

= 180) beause the triangular solution is muh more

eÆient and salable for the high-order matrix.

For suh sparse systems, the metri for high performane

annot be a mere megaop rate, beause there are many un-

avoidable integer operations and indexed loads/stores that

do not use the oating point unit. What is important is the

time for solution and the memory usage. Table 3 illustrates

this point. Here, we ompare three solvers for problems of

inreasing size on a single proessor. The LAPACK banded

solver delivers the highest megaop rate, but is the slowest

and most demanding in memory. It uses simple and eÆient

data strutures at the expense of storing and operating on

many zero entries in the matrix. Using SuperLU to diretly

solve the matrix equation gives slightly redued megaop

rates, but takes muh less time. The iterative solver strikes

a good balane between numerial eÆieny and the use of

omputer resoures, therefore it is the fastest and demands

the least amount of memory, even though it gives the lowest

megaop rate. Just as important, it inreases the size of the

problem that we an solve with a �xed amount of memory.

Performane of our parallel CGS algorithm using SuperLU

on the low-order matrix as preonditioning is listed in Ta-

ble 4. The time is broken down into Fator time from Su-

perLU, Iteration time, and Total time. The total time is

the sum of the �rst two plus some set-up time. For these

matries, it takes 7 to 8 CGS iterations to onverge. Eah

iteration requires two triangular solutions from SuperLU,

whih aounts for a large fration of the iteration time. It

is lear that SuperLU fatorization sales quite well, and it

onstitutes a large fration of the total time on smaller num-

bers of proessors (up to about 8). For more proessors, the

CGS iteration time starts to surpass the fatorization time,

beause the triangular solution algorithm does not sale as



Table 1: SuperLU performane saling with the high-order systems on the CRAY T3E-900.

Npros 1 2 4 8 16 32 64

Grid size R

0

= 21 R

0

= 29 R

0

= 39 R

0

= 50 R

0

= 65 R

0

= 80 R

0

= 100

Matrix order 20,164 30,276 45,796 66,564 101,124 142,884 209,764

Nonzeros in A (10

6

) 0.3 0.4 0.6 0.9 1.3 1.8 2.7

Nonzeros in L+ U (10

6

) 6.9 11.5 19.3 31.1 51.6 80.3 128.1

LU Fatorization

Flops (10

9

) 8.7 17.3 35.1 69.3 134.7 257.6 498.3

Time (seonds) 28.4 31.9 34.0 35.8 39.9 43.5 52.5

Mops 307.7 541.6 1031.5 1937.2 3373.5 5921.3 9490.4

Mops per pro 307.7 270.8 257.9 242.2 210.8 185.1 148.3

Triangular Solution

Flops (10

6

) 55.9 92.9 156.0 252.0 417.0 648.7 1034.7

Time (seonds) 0.8 1.0 1.0 1.2 1.2 1.4 1.5

Mops per pro 67.8 46.8 39.0 26.4 21.9 14.1 10.4

Table 2: CGS solution of unoupled equations on 64 proessors of the IBM SP at NERSC. SuperLU solves

either the low-order systems as preonditioner or the high-order systems diretly. \Average blok" is the

average number of olumns in a dense blok, see Figure 6. \%Index" is the perentage of integer indies

used in the ompat sparse storage over the number of nonzeros in L and U .

Matrix Properties Solver Performane

Grid Order Nonzeros Fill-in Average %Index Memory Fator Tri. Solve CGS

size (10

6

) (10

6

) ratio blok (MB) se. (Mops) se (Mops) time

R

0

= 180

low-ord 0.6 3.0 15 4 12% 844 53.5 (1000) 82.8 (5) 2307.7

high-ord 0.6 7.9 55 8 4% 7149 230.8 (10822) 21.5 (163) 415.0

R

0

= 240

low-ord 1.0 5.2 17 8 8% 1599 81.1 (1431) 60.2 (13) 2116.1

high-ord 1.0 13.4 64 14 3% 14096 1209.3 (5570) 25.6 (271) 2387.6

R

0

= 340

low-ord 2.0 10.0 19 8 8% 3295 188.3 (1792) 371.8 (4) 6361.9

high-ord 2.0 26.1 out of memory

Table 3: Comparison of times in seonds (and Mops) to solve a single unoupled equation using the iterative

algorithm, diret solution with SuperLU, and diret solution with a banded solver in LAPACK, on a single

200 MHz Power3 CPU.

Grid size 10 20 40 60 80 100

Matrix Order 9,604 19,044 47,524 88,804 142,884 209,764

Banded Solver:

fator 11.7 (568) 44.1 (592) out of

solve 0.29 (78) 0.90 (70) memory

total 12.0 45.0

SuperLU (diret):

fator 5.83 (433) 17.0 (460) 76.8 (505) 220 (503) 504 (509)

solve 0.34 (93.8) 0.48 (106) 1.40 (115) 2.93 (118) did not

total 7.63 21.2 91.5 281.5 �nish

CGS + SuperLU:

fator 0.70 (115) 1.55 (153) 4.86 (212) 10.5 (258) 19.6 (288) 33.2 (324)

iteration 2.45 (22) 5.03 (24) 13.0 (26) 24.0 (29) 30.6 (30) 60.5 (30)

total 3.96 8.96 28.4 66.9 138 254



Table 4: The parallel runtimes in seonds of the preonditioned CGS algorithm to solve a single unoupled

equation of various sizes on the IBM SP at NERSC, with 200 MHz Power3 CPUs.

Grid Matrix Time #Proessors

size dimension 1 2 4 6 8 12 16

Fator 42.4 27.1 17.3 14.5 13.3 11.7 10.7

R

0

= 60 88,804 Iter. 24.0 21.7 19.9 19.3 14.3 18.4 23.8

Total 66.9 49.2 37.7 34.2 27.9 30.5 34.8

Fator 192.4 112.9 65.9 51.1 45.1 37.0 31.6

R

0

= 100 209,764 Iter. 60.5 51.3 47.2 48.5 35.5 46.6 53.4

Total 253.9 165.2 114.2 100.5 81.7 84.6 86.1

Fator 852.6 327.3 184.8 142.9 111.8 86.7 73.4

R

0

= 140 381,924 Iter. 155.2 108.1 100.5 104.5 76.0 96.2 130.3

Total 1037.6 437.3 287.1 249.2 189.5 184.7 205.5

Fator 411.4 294.6 257.4 192.1 147.4

R

0

= 180 605,284 Iter. 160.8 161.8 128.2 156.9 203.6

Total 575.1 459.3 388.6 351.7 353.9

well.

6. ITERATIVE SOLUTION TO COUPLED
EQUATIONS

6.1 Parallel implementation
We solve the oupled equations (Eq. 6) with an itera-

tive algorithm using solution to unoupled equations (Eq.

10) as a preonditioner. Sine a preonditioned CGS algo-

rithm worked well in solving the unoupled equations, we

also use CGS for solving the oupled equations. We have

found that onvergene is reliable in all ases of interest

with onvergene being faster at higher energies where the

diagonal-bloks (see Figure 1) are more dominant.

Our basi parallelization strategy is to partition the total

number of proessors into small subgroups of equal num-

bers (usually four or six) of CPUs. Eah subgroup is then

assigned to a partiular (l

1

; l

2

) pair. In doing this we exploit

the symmetry relation between (l

1

; l

2

) and (l

2

; l

1

),

 

L

l

2

l

1

(r

2

; r

1

) = (�1)

S

 

L

l

1

l

2

(r

1

; r

2

) ; (11)

by expliitly storing only the  

L

l

1

l

2

with l

1

� l

2

. In the

iterative algorithm we inlude the l

1

> l

2

terms impliitly.

Therefore, the number of proessor subgroups is equal to

the number of (l

1

; l

2

) terms kept in the oupled equations

with l

1

� l

2

. However, the number of (l

1

; l

2

) bloks in the

matrix equation that we are solving may atually be as high

as twie that number, depending upon the value of L.

The preonditioning steps are by far the most time on-

suming operations in the algorithm. Sine these are just so-

lutions to the unoupled equations the preonditioning steps

onsist of alulations that are entirely loal to eah proes-

sor subgroup. The preonditioner is applied twie for eah

CGS iteration and is aomplished by eah proessor sub-

group implementing the algorithm desribed in Setion 5.

The seond most time-onsuming operations in the algo-

rithm are matrix-vetor multiplies between the diagonal sub-

bloks A

l

1

;l

2

and the vetors for their orresponding  

L

l

1

l

2

.

Again, these operations are entirely loal to a proessor sub-

group. The only operations that require ommuniation

between di�erent subgroups are vetor operations suh as

vetor-vetor adds, diagonal matrix-vetor multiplies, and

salar-vetor multiplies.

6.2 Performance
Typially, we solve 20 separate sets of oupled equations

for eah ollision energy. We must alulate separate wave

funtions for the two spin symmetries (S = 0 and S = 1)

eah of these requires solving the oupled equations for total

angular momentum quantum numbers ranging from L = 0

to L = 9. The size of eah alulation depends on the size

of the two-dimensional grid used and the number of (l

1

; l

2

)

pairs. As an example, a alulation for 20 eV ollision en-

ergy used a grid that extends to 130a

0

and has 209,764 two-

dimensional grid points. We an use a smaller grid for higher

energies while a large grid is required for lower energies. For

a partiular energy, the same two-dimensional grid is used

for every  

L

l

1

l

2

.

We inlude a minimum of six (l

1

; l

2

) pairs in eah oupled

equation. For L = 0 and L = 1 this is usually suÆient.

With inreasing L we need to inlude more terms in the

oupled equations. For L = 6 we typialy inlude 16 (l

1

; l

2

)

pairs. Beyond L = 6 the relative importane of individual

 

L

l

1

l

2

to the angular momentum expansion diminishes and

we an slightly redue the number of (l

1

; l

2

) pairs per ou-

pled equation. Higher energies require more (l

1

; l

2

) pairs per

oupled equation, as many as 24 in our alulations.

In Figure 7 we present examples of the onvergene of the

iterative algorithm for solving the oupled equations. The

behavior that we typially see is that the error in the om-

puted residual inreases during the �rst few iterations, but

then dereases fairly steadily. The rate of onvergene is

dependent upon a number of fators: the number of (l

1

; l

2

)

pairs, the total energy, and the quantum number L. For suf-

�ient numbers of (l

1

; l

2

) pairs the onvergene rate depends

sublinearly on the number of inluded pairs. Whenever we

list the number of (l

1

; l

2

) pairs for a given oupled equation

we are only ounting those for whih l

1

� l

2

so the atual

number of terms in the oupled equation ould be higher by

as muh as a fator of two, depending upon the value of L.

The energy being onsidered also a�ets the rate of on-

vergene. For higher energies, the oupling between di�erent

 

L

l

1

l

2

is relatively weak and the iterative algorithm onverges

more rapidly than at lower energies. The two energies used

as examples in Figure 7 represent the extremes of this de-

pendene. In the ase of 54.4 eV ollision energy, the highest

that we have onsidered, the oupled equations always on-

verge within a dozen CGS iterations. The lowest ollision
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Figure 7: Convergene of the CGS algorithm for

the oupled equations with singlet spin symmetry

for various total angular momenta L. Error of the

alulated sattered wave is plotted for ollision en-

ergies of 15.6 eV (squares) and 54.4 eV (diamonds).

For eah L the number of bloks inluded, ounting

only those with l

1

� l

2

, is listed.

energy we have onsidered is 15.6 eV, just 2 eV above the

ionization threshold. At this energy the onvergene rate is

muh slower and more dependent on L than at the higher

energy. We have found that the present algorithm some-

times fails to onverge for ollisions energies within about 1

eV above the ionization threshold.

In our prodution runs we use the smallest number of

proessors per (l

1

; l

2

) pair, usually four, that will solve an

unoupled equation in a reasonable amount of time. This is

a prudent management of resoures beause the solve step

using the LU fators omputed by SuperLU does not sale

well. In our two-level iterative algorithm the SuperLU solve

step is exeuted hundreds of times. From Figure 7 we see the

number of outer CGS iterations ranges from 12 to 35. Sine

eah CGS iteration requires two preonditioning steps, 24 to

70 solutions of eah unoupled equation are required to solve

one oupled equation. Eah unoupled equation solution

typially require 8 CGS iterations for a total of 16 SuperLU
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Figure 8: Equal-energy sharing, oplanar TDCS for

25 eV inident energy with �

12

�xed. Internormal-

ized measurements [22℄, originally reported in arbi-

trary units, were multiplied by 0.16 to �t alulated

ross setion. Solid and dashed urves represent two

di�erent methods of alulating the TDCS [5,4℄ .

solves. Thus, between 384 and 1120 SuperLU solves for eah

(l

1

; l

2

) pair are used to onverge a set of oupled equations.

The total number of proessors used sales diretly with

the size of the system and is four times the number of (l

1

; l

2

)

bloks, ranging from 24 to 96. Using the example of a

209,764 point grid we are solving for between 1.2 million

and 5 million double preision, omplex numbers for eah

oupled equation. The atual dimension of the linear system

being solved iteratively may be as high as twie that number.

Prodution runs generally take 2 to 3 minutes per iteration

on an IBM SP with 200 MHz Power 3 CPUs. Taking into

aount the set-up time for omputing the LU fators and

the extremely variable number of iterations required the to-

tal time for solving a oupled equation ranges from 30 to

500 minutes on the SP. The longer runs are generally a-

omplished in multiple stages. Our odes are written so

that the solution vetors are periodially saved during the

iterative algorithm. If onvergene has not been reahed

within pre-determined limits, or if a system rash ours

before ompletion, the iterative algorithm is restarted using

the last solution that was saved.

7. SCIENTIFIC RESULTS
The real signi�ane of our work lies in the sienti� a-

omplishment. Our results represent the �rst truly omplete

solution of the eletron-impat ionization problem. This

would not have been possible without modern, salable nu-

merial algorithms, suh as SuperLU, and massively parallel

omputers, suh as the Cray T3E and the IBM SP. With

these tools we were able to implement the exterior om-

plex saling formalism on a sale large enough to produe

aurate and detailed di�erential ross setions for eletron-



Figure 9: Real part of an example radial funtion. In this example l

1

= l

2

so the radial funtion is symmetri

about r

1

= r

2

.

impat ioniztion.

A omparison between some of our alulated di�erential

ross setions and the orresponding experimental data is

shown in Figure 8. More omplete sets of results have been

published elsewhere [21, 4, 13, 5℄. This experimental data

is available only in arbitrary units so the entire set of data

must be multiplied by a single normalization fator whih

was hosen based on omparison with our alulations. Even

so, agreement in shape between our alulations and the

experiment is a remarkable testimony to the auray of

our alulated results. However, our goal was not just to

reprodue the experimental data. The experiments are very

diÆult and only a very limited set of data exists [22℄, most

of whih is available only in arbitrary units. Ultimately,

a omplete desription of eletron-impat ionization must

ome from a theoretial treatment.

The omputationally intensive part of this endeavor was

alulating the wave funtion using the algorithm desribed

in the preeding parts of this paper. An example of one

of the two-dimensional radial funtions used to onstrut

the wave funtion is shown in Figure 9. Although an in-

termediate step in the proess of alulating the ross se-

tions, the alulated wave funtions, themselves, represent

a signi�ant sienti� aheivement. Never before has a fully

onverged wave funtion that desribes two outgoing ele-

trons been alulated out to suh large distanes. These

wave funtions will assist sientists in better understanding

the omplex dynamis of eletron-impat ionization as they

seek to develop theoretial and numerial methods appro-

priate for more omplex systems.
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