
Factorization-based Sparse Solvers and

Preconditioners

X. Sherry Li

xsli@lbl.gov

Lawrence Berkeley National Laboratory

SIAM Annual Meeting, July 12-16, 2010, Pittsburgh

Acknowledgements

Collaborators

Ming Gu, University of California, Berkeley

Esmond Ng, Lawrence Berkeley National Lab

Meiyue Shao, Umeå University, Sweden

Panayot Vassilevski, Lawrence Livermore National Lab

Jianlin Xia, Purdue University

Ichitaro Yamazaki, Lawrence Berkeley National Lab

Funded through DOE SciDAC projects

TOPS (Towards Optimal Petascale Simulations)

CEMM (Center for Extended MHD Modeling)

ComPASS (Community Petascale Project for Accelerator

Science and Simulation)

2

The Problem

Solve Ax = b, A is sparse, b is dense or sparse

Example: A of dimension 106, 10~100 nonzeros per row

fluid dynamics, structural mechanics, chemical process

simulation, circuit simulation, electromagnetic fields, magneto-

hydrodynamics, seismic-imaging, economic modeling,

optimization, data analysis, statistics, . . .

3

Mallya/lhr01Boeing/msc00726

The algorithm . . . factorization

Gaussian elimination: A = LU

A is modified . . . numerically as well as pattern-wise

Deliver reliable solution, error bounds, condition estimation,

multiple RHS, . . .

Complexity wall

Theorem: for model problems, Nested Dissection ordering

gives optimal complexity in exact arithmetic [George ’73,

Hoffman/Martin/Rose, Eisenstat, Schultz and Sherman]

2D (kxk = N grids): O(N logN) memory, O(N3/2) operations

3D (kxkxk = N grids): O(N4/3) memory, O(N2) operations

4

Sparse factorization

Store A explicitly … many sparse compressed formats

“Fill-in” . . . new nonzeros in L & U

Graph algorithms: directed/undirected graphs, bipartite

graphs, paths, elimination trees, depth-first search, heuristics

for NP-hard problems, cliques, graph partitioning, . . .

Unfriendly to high performance, parallel computing

Irregular memory access, indirect addressing, strong task/data

dependency

5

1

2

3

4

6

7

5L

U
1

6

9

3

7 8

4 521

9

32

4

5

6 7
8

Available direct solvers

Survey of different types of factorization codes

http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf

LLT (s.p.d.)

LDLT (symmetric indefinite)

LU (nonsymmetric)

QR (least squares)

Sequential, shared-memory (multicore), distributed-memory,

out-of-core

Our work focuses on unsymmetric LU

Sequential SuperLU [Demmel/Eisenstat/Gilbert/Liu/L. ‟99]

SuperLU_MT [L./Demmel/Gilbert „99] : Pthreads, OpenMP

SuperLU_DIST [L./Demmel/Grigori „00] : MPI

6

http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf
http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf

Download counts

Sun VictoriaFalls: MC+MT

1.4 GHz UltraSparc T2

1.4 Gflops/core

2 sockets

8 cores/socket

8 hardware threads/core

 Maximum speedup 20

effective use of 64 threads

How useful?

7

FY 2006 FY 2009

Total 6176 9983

SuperLU 4361 5719

SuperLU_MT 690 1779

SuperLU_DIST 1125 2485

SuperLU_MT

Beyond direct solver

Factorization variants very useful for constructing

preconditioners for an iterative solver

Approximate factorization: Incomplete LU (ILU), approximate

inverse, …

Factorization of subproblems: Schur complement method …

Rest of the talk . . .
Supernodal ILU

Available in SuperLU 4.0

Hybrid solver based on Schur complement method

Rank structured sparse factorization

8

ILU preconditioner

Structure-based dropping: level-of-fill

ILU(0), ILU(1), …

Rationale: the higher the level, the smaller the entries

Separate symbolic factorization to determine fill-in pattern

Value-based dropping: drop truly small entries

Fill-in pattern determined on-the-fly

ILUTP [Saad]: among the most sophisticated, and (arguably)

robust; implementation similar to direct solver

“T” = threshold, “P” = pivoting

Dual dropping: ILUTP(p, Τ)

• Remove elements smaller than Τ

• At most p largest kept in each row or column

9

SuperLU [Demmel/Eisenstat/Gilbert/Liu/L. ‟99]

http://crd.lbl.gov/~xiaoye/SuperLU

10

• Left-looking, supernode

DONE NOT

TOUCHED
WORKING

U

L

A

panel

1.Sparsity ordering of columns

use graph of A‟*A

2.Factorization

For each panel …

• Partial pivoting

• Symbolic fact.

• Num. fact. (BLAS 2.5)

3.Triangular solve

Primary dropping rule: S-ILU(Τ)

Similar to ILUTP, adapted to supernode

1. U-part:

2. L-part: retain supernode

Remarks

1) Delayed dropping

2) Entries computed first, then dropped.

May not save many flops compared to LU

3) Choices for RowSize() metric

e.g.,

11

0set then ,)(:, If 
 ijij ujAu 

zero torowth - entire set the then ,):,(if),:(:, Supernode itsiRowSizetsL 

i

 ||||)(xxRowSize

Secondary dropping rule: S-ILU(p, Τ)

Control fill ratio with a user-desired upper bound

Earlier work, column-based

[Saad]: ILU(p, Τ), at most p largest nonzeros allowed in each row

[Gupta/George]: p adaptive for each column

Our new scheme is area-based

Define adaptive upper bound function

 More flexible, allow some columns to fill more, but limit overall

12

))(:,()(jAnnzjp  

)):1(:,(/)):1(:,()(

j toup 1column from ratio fillat Look

jAnnzjFnnzjfr

:





],1[)(jf

)()(such that largest, ponly retain , exceeds)(If jfjfrf(j)jfr 

):1(:, jF

j+1

Experiments: GMRES + ILU

232 unsymmetric test matrices

RHS is generated so the true solution is 1-vector

227 from Univ. of Florida Sparse Matrix Collection,

dimension 5K–1M, condition number below 1015

5 from MHD calculation in tokmak design in fusion plasma

Use restarted GMRES with ILU as a right preconditioner

Size of Krylov subspace set to 50

Initial guess is a 0-vector

Stopping criteria:

AMD Opteron 2.4 GHz quad-core (Cray XT5), 16 GBytes

memory, PathScale pathcc and pathf90 compilers

13

PbyULPA - 1)
~~

(Solve

iterations 500 and 10
2

8

2
  b x-Ab k

S-ILU comprehensive tests

Performance profile of fill ratio – fraction of the problems a solver

could solve within a fill ratio of X

Performance profile of runtime – fraction of the problems a solver

could solve within a factor X of the best solution time

Conclusion:

New area-based heuristic is much more robust than column-based one

ILUTP(Τ) is reliable; but need secondary dropping to control memory

14

Compare with the other preconditioners

SPARSKIT [saad] : ILUTP, closest to ours

Row-wise algorithm, no supernode

Secondary dropping uses a fixed p for each row

ILUPACK [Bolhoefer et al.] : very different

Inverse-based approach: monitor the norm of the k-th row of

L-1, if too large, delay pivot to next level

Multilevel: restart the delayed pivots in a new level

15

Compare with SPARSKIT, ILUPACK

16

S-ILU:

ILUPACK :

SPARSKIT :

0.1h diag_thres ,5 ,10 4   

5 ,5 ,10 4   

n

nnz
p    ,5 ,10 4

Comparison (cont) … a closer look …

S-ILU and ILUPACK are comparable: S-ILU is slightly faster,

ILUPACK has slightly lower fill

No preconditioner works for all problems . . .

They do not solve the same set of problems

S-ILU succeeds with 142

ILUPACK succeeds with 130

Both succeed with 100 problems

 Two methods complimentary to one another, both have their

place in practice

17

Schur complement method

a.k.a iterative substructuring method

or, non-overlapping domain decomposition

Divide-and-conquer paradigm . . .

Divide entire problem (domain, graph) into subproblems

(subdomains, subgraphs)

Solve the subproblems

Solve the interface problem (Schur complement)

Variety of ways to solve subdomain problems and the Schur

complement … lead to a powerful polyalgorithm or hybrid

solver framework

18

Algebraic view

1. Reorder into 2x2 block system, A11 is block diagonal

2. Schur complement

S corresponds to interface (separator) variables, no need to

be formed explicitly

3. Compute the solution

19



























2

1

2

1

2221

1211

b

b

x

x

AA

AA

111111

2212

1

1121112212

1

112122

 where ULA

GWA)A (L)A – (U A A A – A AS
-TT-T-





solverdirect)()2(

solver iterative)()1(

2121

1

111

1

1

11212

1

2



 

 x – AbAx

 b A – AbSx

-

-

Case of two subdomains

Structural analysis view

20

1
2

InterfaceInterface""

interior""

)()(

)()(

)(




















I

i

AA

AA
A

i

II

i

iI

i

Ii

i

iii




















)2()1()2()1(

)2()2(

)1()1(

matrix block Assembled 1.

IIIIiIiI

Iiii

Iiii

AAAA

AA

AA

A

)2()1(

)(1)()()()(

)2()1(

 complementSchur Assembled

 :scomplementSchur Local

tly,independen and ofn eliminatiodirect Perform 2.

SSS

AAAAS

AA

i

Ii

i

ii

i

iI

i

II

i






Substructure contribution:

Solving the Schur complement system

Proposition [Smith/Bjorstad/Gropp‟96]

For an SPD matrix, condition number of a Schur complement is no

larger than that of the original matrix.

S is much reduced in size, better conditioned, but denser

solvable with preconditioned iterative solver

Two approaches to preconditioning S

1. Explicit S (e.g., HIPS [Henon/Saad‟08], and ours)

 can construct general algebraic preconditioner, e.g. ILU(S),

must preserve sparsity of S

2. Implicit S (e.g. [Giraud/Haidary/Pralet‟09])

 preconditioner construction is restricted; more parallel

 E.g., additive Schwarz preconditioner

21

)3()2()1(SSSS 


1)3(1)2(1)1(

 SSSM

Partition adjacency graph of |A|+|AT|

Goals: reduce size of separator, balance subdomains sizes

nested dissection (e.g., PT-Scotch, ParMetis)

k-way partition (preferred)

Memory requirement: fill is restricted within

“small” diagonal blocks of A11, and

ILU(S), sparsity can be enforced

Parallelism – extraction of multiple subdomains

22
































2221

22

11

2221

1211

AFFF

ED

ED

ED

AA

AA

k

kk





Hierarchical parallelism

Multiple procs per subdomain

one subdomain with 2x3 procs (e.g. SuperLU_DIST, MUMPS)

Advantages:

Only need modest level of parallelism from direct solver.

Can keep fixed and modest number of subdomains when
increasing processor count. The size of the Schur complement
system is constant, and convergence rate is constant,
regardless of processor count.

23

Application 1: Burning plasma for fusion energy

DOE SciDAC project: Center for Extended Magnetohydrodynamic

Modeling (CEMM), PI: S. Jardin, PPPL

Develop simulation codes for studying the nonlinear

macroscopic dynamics of MHD-like phenomena in magnetized

fusion plasmas in a tokamak, address critical issues facing

burning plasma experiments such as ITER

Simulation code suite includes M3D-C1, NIMROD

24


R

Z

• At each  = constant plane, scalar 2D data

is represented using 18 degree of freedom

quintic triangular finite elements Q18

• Coupling along toroidal direction

[S. Jardin]

S-ILU for extended MHD (fusion)

ILU parameters:

Matrices from M3D-C1 simulation code

Up to 9x smaller fill ratio, and 10x faster

25

Problems order Nonzeros

(millions)

SuperLU

Time fill-ratio

ILU

time fill-ratio

GMRES

Time Iters

matrix31 17,298 2.7 m 33.3 13.1 8.2 2.7 0.6 9

matrix41 30,258 4.7 m 111.1 17.5 18.6 2.9 1.4 11

matrix61 66,978 10.6 m 612.5 26.3 54.3 3.0 7.3 20

matrix121 263,538 42.5 m x x 145.2 1.7 47.8 45

matrix181 589,698 95.2 m x x 415.0 1.7 716.0 289

10 ,10 4   

Hybrid solver for extended MHD (fusion)

26

Cray XT4 at NERSC

Matrix211 – dimension = 801K, nonzeros = 129M, real,

unsymmetric, indefinite

PT-Scotch extracts 8 subdomains of size ≈ 99K, S of size ≈

13K

SuperLU_DIST to factorize each subdomain, and compute

preconditioner LU()

BiCGStab of PETSc to solve Schur system on 64 processors

with residual < 10-12 , converged in 10 iterations

Needs only 1/3 memory of

direct solver

S
~

Application 2: Accelerator cavity design

27

• DOE SciDAC: Community Petascale Project for Accelerator

Science and Simulation (ComPASS), PI: P. Spentzouris, Fermilab

• Development of a comprehensive computational infrastructure

for accelerator modeling and optimization

• RF cavity: Maxwell equations in electromagnetic field

• FEM in frequency domain leads to large sparse eigenvalue

problem; needs to solve shifted linear systems

bMx MK 00

2

0)(

problem eigenvaluelinear



E Closed

Cavity

M

Open

Cavity

Waveguide BC

Waveguide BC

Waveguide BC

[L.-Q. Lee]

bx M W - i K )(

problem eigenvaluecomplex nonlinear

0

2

0 

RF unit in ILC

Hybrid solver for RF cavity design

Cray XT4 at NERSC

Tdr8cavity – design for International Linear Collider

dimension = 17.8M, nonzeros = 727M

PT-Scotch extracts 64 subdomains of size ≈ 277K, S of size ≈

57K

BiCGStab of PETSc to solve Schur system on 64 processors

with residual < 10-12, converged in 9 – 10 iterations

Direct solver failed !

28

Computing approximate Schur as preconditioner

Combinatorial problems . . .

Sparse triangular solution with many sparse RHSs

Sparse matrix–sparse matrix multiplication

K-way graph partitioning with multiple constraints

Small separator

Similar subdomains

Similar connectivity

29

) ,ˆ(sparsify
~

 ;)(ˆ

~~
) ,(sparsify

~
 ;) ,(sparsify

~

2

)()(

22

)(

)()()(

11





SSpTAS

GWT

WWGG

q

qpp

ppp









lll

l

l

-

l

TT

l

-T

l ULD)E (L)FU – AS   where,(
1

22

Sparse triangular solution with sparse RHSs

RHS vectors Eℓ and Fℓ are sparse (e.g., about 20 nnz per

column); There are many RHS vectors (e.g., O(104) columns)

Blocking the RHS vectors

Reduce number of calls to the symbolic routine and number of

messages, and improve read reuse of the LU factors

 Achieved over 5x speedup

zeros must be padded to fill the block

30

Sparse triangular solution with sparse RHSs

Combinatorial question: Reorder columns of Eℓ to maximize

structural similarity among the adjacent columns.

Where are the fill-ins?

Path Theorem [Gilbert‟94] Given the elimination tree of Dl, fill

will be generated in Gl at the positions associated with the

nodes on the path from nodes of the nonzeros in El to the root

31

24 padded zeros

Sparse triangular solution … postordering

Postorder-conforming ordering of the RHS vectors

Postorder the elimination tree

Permute the columns of El such that the row indices of the first

nonzeros are in ascending order

Increased overlap of the paths to the root, fewer padded zeros

30-60% speedup

32

13 padded zeros

Sparse triangular solution … further optimization

A reordering based on a hyper-graph partitioning model which

minimizes certain cost function that measures the

dissimilarity of the sparsity pattern within a partition. This led

to additional 10% speedup.

33

Hybrid solver summary

Multiple levels of parallelism is essential for difficult problems

and large core count.

Tuning parameter:

Number of subdomains represents important trade-off

between direct solver scalability and convergence rate of the

iterative solver of the Schur system.

34

Forward looking . . .

Can we break the complexity wall of factorization?

2D (kxk = N grids): O(N logN) memory, O(N3/2) operations

3D (kxkxk = N grids): O(N4/3) memory, O(N2) operations

. . . Combine rank structured factorization with sparsity

structure  sparse structured factorization

35

Rank structured matrices

Fast multipole method

Greengard, Roklin, Starr, et al.

Hierarchical matrices: H-matrix, H2-matrix

Bebendorf, Börm, Grasedyck, Hackbusch, Le Borne,

Martinsson, Tygert, et al.

Quasi-separable matrices

Bini, Eidelman, Gemignani, Gohberg, Olshevsky, Van Barel, et

al.

Semi-separable matrices

Chandrasekaran, Dewilde, Gohberg, Gu, Kailath, Van Barel,

van der Veen, Vandebril, White, et al.

Others . . .

36

Rank structured dense Cholesky

One step of factorization

Data compression of off-diagonal block

rank revealing QR or

Approximate factor

37
























S

LL

IL

L
F

TT

2111

21

11

SVD accurate-

)(||ˆˆˆ||, size of is ,ˆˆˆ
ˆˆ

)(221 OVUrΣVUVU
V

V
UUL TTT

T

T

T 


























SPD guaranteed ,
)(0

00

ˆˆˆ0

00~~~

)(ˆˆˆ~
 :Schur eapproximat

22

222

22




























O
F

UU
FLLF

OSUUSUUFS

T

T

TT

Multiple blocks

Hierarchical factorization

Complexity . . . almost linear !

Factorization: O(r N2)

Solution: O(r N)

Storage: O(r N)

38

Recursive partitioning Structured factor

Sparse structured factorization

Low-rank property of the intermediate dense matrices

Discretized PDEs: dense fill-in, Schur complements

Multifrontal factorization kernels

Frontal matrices: Fi

Update matrices: Ui

 Numerical ranks: 10 - 20

Nested dissection ordering

39Classical factor Structured factor

Results of sparse structured MF factorization

Complexity

Lower levels: standard factorization, upper levels: structured

factorization

Classical factorization: O(N3/2)

Structured factorization: O(r2 N)

Performance

For 2D Model problem of mesh size 40962 , as a direct solver,

10x faster than classical MF

For linear elasticity problems, as a preconditioner (with larger τ

), the condition numbers of the preconditioned systems are
small and essentially constant, independent of the Λ/μ ratio.

40

constants Lame theare and

fieldnt vector displaceme is where,

on 0

)1,0()1,0(in))((

2











u

u

fuu

Future of sparse structured factorization

3D problems

parallel algorithms

Rank analysis for more problems

Nonsymmetric, indefinite problems

41

Final remark

Sparse factorization algorithms are very difficult to scale up

Numerics, combinatorics, high degree dependency, but modest

parallelism is achievable.

Still, indispensible tool for difficult problems

As preconditioner, acceleration techniques, can be effectively

used to improve numerics for iterative methods.

42

