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The Problem

Solve Ax = b,  A is sparse, b is dense or sparse

Example: A of dimension 106, 10~100 nonzeros per row

fluid dynamics, structural mechanics, chemical process 

simulation, circuit simulation, electromagnetic fields, magneto-

hydrodynamics, seismic-imaging, economic modeling,  

optimization, data analysis, statistics, . . .
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The algorithm . . . factorization

Gaussian elimination:   A = LU

A is modified . . . numerically as well as pattern-wise

Deliver reliable solution, error bounds, condition estimation, 

multiple RHS, . . .

Complexity wall

Theorem: for model problems, Nested Dissection ordering 

gives optimal complexity in exact arithmetic [George ’73, 

Hoffman/Martin/Rose, Eisenstat, Schultz and Sherman]

2D (kxk = N grids): O(N logN) memory, O(N3/2) operations

3D (kxkxk = N grids): O(N4/3) memory, O(N2) operations
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Sparse factorization

Store A explicitly …  many sparse compressed formats

“Fill-in” . . . new nonzeros in L & U

Graph algorithms: directed/undirected graphs, bipartite 

graphs, paths, elimination trees, depth-first search, heuristics 

for NP-hard problems, cliques, graph partitioning, . . .

Unfriendly to high performance, parallel computing

Irregular memory access, indirect addressing, strong task/data 

dependency
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Available direct solvers

Survey of different types of factorization codes

http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf

LLT (s.p.d.) 

LDLT (symmetric indefinite) 

LU (nonsymmetric)

QR (least squares)

Sequential, shared-memory (multicore), distributed-memory, 

out-of-core

Our work focuses on unsymmetric LU

Sequential SuperLU [Demmel/Eisenstat/Gilbert/Liu/L. ‟99]

SuperLU_MT [L./Demmel/Gilbert „99] : Pthreads, OpenMP

SuperLU_DIST [L./Demmel/Grigori „00] : MPI
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Download counts

Sun VictoriaFalls: MC+MT

1.4 GHz UltraSparc T2

1.4 Gflops/core

2 sockets 

8 cores/socket 

8 hardware threads/core

 Maximum speedup 20

effective use of 64 threads

How useful?
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FY 2006 FY 2009

Total 6176 9983

SuperLU 4361 5719

SuperLU_MT 690 1779

SuperLU_DIST 1125 2485

SuperLU_MT



Beyond direct solver

Factorization variants very useful for constructing 

preconditioners for an iterative solver

Approximate factorization: Incomplete LU (ILU), approximate 

inverse, … 

Factorization of subproblems: Schur complement method …

Rest of the talk . . .
Supernodal ILU

Available in SuperLU 4.0

Hybrid solver based on Schur complement method

Rank structured sparse factorization
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ILU preconditioner

Structure-based dropping:  level-of-fill

ILU(0),  ILU(1), …

Rationale: the higher the level, the smaller the entries

Separate symbolic factorization to determine fill-in pattern

Value-based dropping:  drop truly small entries

Fill-in pattern determined on-the-fly

ILUTP [Saad]: among the most sophisticated, and (arguably) 

robust;  implementation similar to direct solver

“T” = threshold, “P” = pivoting

Dual dropping: ILUTP(p, Τ )

• Remove elements smaller than Τ

• At most p largest kept in each row or column
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SuperLU    [Demmel/Eisenstat/Gilbert/Liu/L. ‟99]

http://crd.lbl.gov/~xiaoye/SuperLU
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For each panel …

• Partial pivoting

• Symbolic fact.

• Num.  fact. (BLAS 2.5)

3.Triangular solve



Primary dropping rule:  S-ILU(Τ )

Similar to ILUTP, adapted to supernode

1. U-part:

2. L-part:  retain supernode

Remarks

1) Delayed dropping

2) Entries computed first, then dropped. 

May not save many flops compared to LU

3) Choices for RowSize() metric

e.g., 
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Secondary dropping rule:  S-ILU(p, Τ )

Control fill ratio with a user-desired upper bound 

Earlier work, column-based

[Saad]: ILU(p, Τ ), at most p largest nonzeros allowed in each row

[Gupta/George]: p adaptive for each column

Our new scheme is area-based

Define adaptive upper bound function

 More flexible, allow some columns to fill more, but limit overall
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Experiments: GMRES + ILU

232 unsymmetric test matrices

RHS is generated so the true solution is 1-vector

227 from Univ. of Florida Sparse Matrix Collection,

dimension 5K–1M, condition number below 1015

5 from MHD calculation in tokmak design in fusion plasma 

Use restarted GMRES with ILU as a right preconditioner

Size of Krylov subspace  set  to 50

Initial guess is a 0-vector

Stopping criteria: 

AMD Opteron 2.4 GHz quad-core (Cray XT5),  16 GBytes

memory, PathScale pathcc and pathf90 compilers
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S-ILU comprehensive tests

Performance profile of fill ratio – fraction of the problems a solver 

could solve within a fill ratio of  X

Performance profile of runtime – fraction of the problems a solver 

could solve within a factor X of the best solution time

Conclusion: 

New area-based heuristic is much more robust than column-based one

ILUTP(Τ ) is reliable; but need secondary dropping to control memory
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Compare with the other preconditioners

SPARSKIT [saad] : ILUTP,  closest to ours

Row-wise algorithm, no supernode

Secondary dropping uses a fixed p for each row

ILUPACK [Bolhoefer et al.] : very different

Inverse-based approach: monitor the norm of the k-th row of 

L-1, if too large, delay pivot to next level

Multilevel: restart the delayed pivots in a new level
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Compare with SPARSKIT, ILUPACK
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S-ILU:  

ILUPACK :

SPARSKIT : 
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Comparison (cont) … a closer look …

S-ILU and ILUPACK are comparable: S-ILU is slightly faster, 

ILUPACK has slightly lower fill

No preconditioner works for all problems . . .

They do not solve the same set of problems

S-ILU succeeds with 142

ILUPACK succeeds with 130

Both succeed with 100 problems

 Two methods complimentary to one another, both have their 

place in practice
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Schur complement method

a.k.a  iterative substructuring method

or,  non-overlapping domain decomposition

Divide-and-conquer paradigm . . . 

Divide entire problem (domain, graph) into subproblems 

(subdomains, subgraphs)

Solve the subproblems

Solve the interface problem (Schur complement)

Variety of ways to solve subdomain problems and the Schur 

complement  … lead to a powerful polyalgorithm or hybrid 

solver framework
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Algebraic view

1. Reorder into 2x2 block system, A11 is block diagonal

2. Schur complement

S corresponds to interface (separator) variables, no need to 

be formed explicitly

3. Compute the solution
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Case of two subdomains

Structural analysis view
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Solving the Schur complement system

Proposition [Smith/Bjorstad/Gropp‟96]

For an SPD matrix, condition number of a Schur complement is no 

larger than that of the original matrix.

S is much reduced in size, better conditioned, but denser

solvable with preconditioned iterative solver

Two approaches to preconditioning S

1. Explicit S (e.g., HIPS [Henon/Saad‟08], and ours)

 can construct general algebraic preconditioner, e.g. ILU(S), 

must preserve sparsity of S

2. Implicit S (e.g. [Giraud/Haidary/Pralet‟09])

 preconditioner construction is restricted; more parallel

 E.g., additive Schwarz preconditioner
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Partition adjacency graph of |A|+|AT|

Goals: reduce size of separator, balance subdomains sizes

nested dissection (e.g., PT-Scotch, ParMetis)

k-way partition  (preferred)

Memory requirement: fill is restricted within

“small” diagonal blocks of A11, and 

ILU(S),  sparsity can be enforced

Parallelism – extraction of multiple subdomains
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Hierarchical parallelism

Multiple procs per subdomain

one subdomain with 2x3 procs (e.g. SuperLU_DIST, MUMPS)

Advantages:

Only need modest level of parallelism from direct solver.

Can keep fixed and modest number of subdomains when 
increasing processor count. The size of the Schur complement 
system is constant, and convergence rate is constant, 
regardless of processor count.
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Application 1: Burning plasma for fusion energy

DOE SciDAC project:  Center for Extended Magnetohydrodynamic 

Modeling (CEMM),   PI: S. Jardin, PPPL

Develop simulation codes for studying the nonlinear 

macroscopic dynamics of MHD-like phenomena in magnetized 

fusion plasmas in a tokamak,   address critical issues facing 

burning plasma experiments such as ITER

Simulation code suite includes M3D-C1, NIMROD
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quintic triangular finite elements Q18

• Coupling along toroidal direction

[S. Jardin]



S-ILU for extended MHD (fusion)

ILU parameters:  

Matrices from M3D-C1 simulation code

Up to 9x smaller fill ratio, and 10x faster
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Problems order Nonzeros

(millions)

SuperLU

Time     fill-ratio

ILU

time  fill-ratio

GMRES

Time     Iters

matrix31 17,298 2.7 m 33.3 13.1 8.2 2.7 0.6 9

matrix41 30,258 4.7 m 111.1 17.5 18.6 2.9 1.4 11

matrix61 66,978 10.6 m 612.5 26.3 54.3 3.0 7.3 20

matrix121 263,538 42.5 m x x 145.2 1.7 47.8 45

matrix181 589,698 95.2 m x x 415.0 1.7 716.0 289

10 ,10 4   



Hybrid solver for extended MHD (fusion)
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Cray XT4 at NERSC

Matrix211 – dimension = 801K,  nonzeros = 129M,  real, 

unsymmetric, indefinite 

PT-Scotch extracts 8 subdomains of size ≈ 99K, S of size ≈ 

13K 

SuperLU_DIST to factorize each subdomain, and compute 

preconditioner LU(    )

BiCGStab of PETSc to solve Schur system on 64 processors 

with residual < 10-12 , converged in 10 iterations

Needs only 1/3 memory of 

direct solver

S
~



Application 2: Accelerator cavity design
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• DOE SciDAC: Community Petascale Project for Accelerator

Science and Simulation (ComPASS),  PI: P. Spentzouris, Fermilab

• Development of a comprehensive computational infrastructure    

for  accelerator modeling and optimization

• RF cavity: Maxwell equations in electromagnetic field

• FEM in frequency domain leads to large sparse eigenvalue

problem;  needs to solve shifted linear systems

bMx MK 00

2

0 )(

problem eigenvaluelinear 



E Closed

Cavity

M

Open

Cavity

Waveguide BC

Waveguide BC

Waveguide BC

[L.-Q. Lee]
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Hybrid solver for RF cavity design

Cray XT4 at NERSC

Tdr8cavity – design for International Linear Collider

dimension = 17.8M, nonzeros = 727M

PT-Scotch extracts 64 subdomains of size ≈ 277K, S of size ≈ 

57K

BiCGStab of PETSc to solve Schur system on 64 processors 

with residual < 10-12, converged in 9 – 10 iterations

Direct solver failed !
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Computing approximate Schur as preconditioner

Combinatorial problems . . .

Sparse triangular solution with many sparse RHSs

Sparse matrix–sparse matrix multiplication

K-way graph partitioning with multiple constraints

Small separator

Similar subdomains

Similar connectivity

29

)  ,ˆ(sparsify
~

   ; )(ˆ

~~
)  ,(sparsify

~
   ; ) ,(sparsify

~

2

)()(

22

)(

)()()(

11





SSpTAS

GWT

WWGG

q

qpp

ppp









lll

l

l

-

l

TT

l

-T

l ULD)E (L)FU – AS       where,(
1

22



Sparse triangular solution with sparse RHSs

RHS vectors Eℓ and Fℓ are sparse (e.g., about 20 nnz per 

column);  There are many RHS vectors (e.g., O(104) columns)

Blocking the RHS vectors

Reduce number of calls to the symbolic routine and number of 

messages, and improve read reuse of the LU factors 

 Achieved over 5x speedup

zeros must be padded to fill the block
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Sparse triangular solution with sparse RHSs

Combinatorial question:  Reorder columns of Eℓ to maximize 

structural similarity among the adjacent columns.

Where are the fill-ins?

Path Theorem [Gilbert‟94]  Given the elimination tree of Dl, fill 

will be generated in Gl at the positions associated with the 

nodes on the path from nodes of the nonzeros in El to the root
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Sparse triangular solution … postordering

Postorder-conforming ordering of the RHS vectors

Postorder the elimination tree

Permute the columns of El  such that the row indices of the first 

nonzeros are in ascending order

Increased overlap of the paths to the root, fewer padded zeros

30-60% speedup
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Sparse triangular solution … further optimization

A reordering based on a hyper-graph partitioning model which 

minimizes certain cost function that measures the 

dissimilarity of the sparsity pattern within a partition.  This led 

to additional 10% speedup.   
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Hybrid solver summary

Multiple levels of parallelism is essential for difficult problems 

and large core count.

Tuning parameter: 

Number of subdomains represents important trade-off 

between direct solver scalability and convergence rate of the 

iterative solver of the Schur system.
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Forward looking . . .

Can we break the complexity wall of factorization?

2D (kxk = N grids): O(N logN) memory, O(N3/2) operations

3D (kxkxk = N grids): O(N4/3) memory, O(N2) operations

. . . Combine rank structured factorization with sparsity

structure  sparse structured factorization
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Rank structured matrices

Fast  multipole method

Greengard, Roklin, Starr, et al.

Hierarchical matrices: H-matrix,  H2-matrix

Bebendorf,  Börm, Grasedyck, Hackbusch, Le Borne, 

Martinsson, Tygert, et al.

Quasi-separable matrices

Bini, Eidelman, Gemignani, Gohberg, Olshevsky, Van Barel, et 

al.

Semi-separable matrices

Chandrasekaran, Dewilde, Gohberg, Gu, Kailath, Van Barel, 

van der Veen, Vandebril, White, et al.

Others . . .
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Rank structured dense Cholesky

One step of factorization

Data compression of off-diagonal block

rank revealing QR or

Approximate factor
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Multiple blocks

Hierarchical factorization

Complexity . . . almost linear !

Factorization: O(r N2)

Solution: O(r N)

Storage: O(r N)
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Sparse structured factorization

Low-rank property of the intermediate dense matrices

Discretized PDEs: dense fill-in,  Schur complements

Multifrontal factorization kernels

Frontal matrices: Fi

Update matrices: Ui

 Numerical ranks: 10 - 20

Nested dissection ordering

39Classical factor Structured factor



Results of sparse structured MF factorization

Complexity

Lower levels: standard factorization,  upper levels: structured 

factorization

Classical factorization: O(N3/2)

Structured factorization: O(r2 N)

Performance

For 2D Model problem of mesh size 40962 , as a direct solver, 

10x faster than classical MF

For linear elasticity problems,  as a preconditioner (with larger τ

),  the condition numbers of the preconditioned systems are 
small and essentially constant, independent of the Λ/μ ratio.
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Future of sparse structured factorization

3D problems

parallel algorithms

Rank analysis for more problems

Nonsymmetric, indefinite problems
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Final remark

Sparse factorization algorithms are very difficult to scale up

Numerics, combinatorics, high degree dependency, but modest 

parallelism is achievable. 

Still, indispensible tool for difficult problems

As preconditioner, acceleration techniques, can be effectively 

used to improve numerics for iterative methods.
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