
SuperLU DIST: A Salable Distributed-Memory SparseDiret Solver for Unsymmetri Linear Systems�Xiaoye S. Liy James W. DemmelzOtober 11, 2002AbstratIn this paper, we present the main algorithmi features in the software pakageSuperLU DIST, a distributed-memory sparse diret solver for large sets of linearequations. We give in detail our parallelization strategies, with fous on salabilityissues, and demonstrate its parallel performane and salability on urrent mahines.The solver is based on sparse Gaussian elimination, with an innovative stati pivotingstrategy proposed earlier by the authors. The main advantage of stati pivoting overlassial partial pivoting is that it permits a priori determination of data struturesand ommuniation patterns, whih lets us exploit tehniques used in parallel sparseCholesky algorithms to better parallelize both LU deomposition and triangular solveon large sale distributed mahines.
�This work was supported in part by the National Energy Researh Sienti� Computing Center(NERSC) whih is supported by the Diretor, OÆe of Advaned Sienti� Computing Researh, Divisionof Mathematial, Information, and Computational Sienes of the U.S. Department of Energy underontrat number DE-AC03-76SF00098, and was supported in part by the National Siene FoundationCooperative Agreement No. ACI-9619020, NSF Grant No. ACI-9813362, the Department of EnergyGrant Nos. DE-FG03-94ER25219 and DE-FC03-98ER25351, and UT Subontrat No. ORA4466 fromARPA Contrat No. DAAL03-91-C0047.yNERSC, Lawrene Berkeley National Lab, MS 50F, 1 Cylotron Rd., Berkeley, CA 94720.xiaoye�ners.gov.zComputer Siene Division, University of California, Berkeley, CA 94720. demmel�s.berkeley.edu.1

Contents1 Introdution 32 The GESP algorithm 42.1 Numerial stability . 72.2 Opportunities for better �ll-reduing orderings 113 Parallel algorithms 133.1 Matrix to proessor mapping and distributed data struture 133.2 Numerial kernel based on Level 3 BLAS 153.3 Parallel fatorization with pipelining . 153.4 Parallel triangular solution . 214 Parallel performane and salability 214.1 Fatorization . 224.2 Triangular solution . 234.3 Memory usage . 244.4 Salability . 244.5 Load balane and ommuniation/synhronization overhead 264.6 Large appliations . 275 Related work 276 Conluding remarks and future work 28A Exploiting higher preision to enhane stability 33

2

1 IntrodutionParallelizing sparse diret solvers has been an ative researh area in the past deade.Our goal is to implement a sparse diret solver for nonsymmetri matries as salably aspossible on distributed memory mahines.It is important to say what we do not mean by salability, beause it is not possibleto ahieve salability for some reasonable senses of the word. For instane, if the n-by-nmatrix equation to be solved arises from a di�erential equation like Laplae's equation,then we annot aspire to ahieve the O(n) omplexity of methods like multigrid. Nordo we laim linear speedups for �xed problem size, sine this depends so muh on thepartiular sparse matrix struture. Nor do we laim linear speedups for for onstant-work-per-proessor saling on reasonable model problems, although we do ome lose (seesetion 4.4).What we do mean by salability is \as salable as solving a symmetri positive de�nite(spd) linear system by a sparse diret method," or more briey \as salable as sparseCholesky." The reason for this is that the nonsymmetri problem is stritly more diÆultthan the spd ase, so that we annot hope to do better in general. Our laim of salabilityis based on our ability to use all the tehniques exploited to parallelize sparse Cholesky(see below). The prie we pay is a very small probability of numerial instability. Wenote that this numerial instability never ourred on our extensive test set for the defaultparameter settings of our ode, and in any event is always deteted and reported by theode.The advantage of sparse Cholesky over the nonsymmetri ase is that pivots anbe hosen in any order from the main diagonal while guaranteeing stability. This letsus perform pivot hoie before numerial fatorization begins, in order to minimize �ll-in, maximize parallelism, preompute the nonzero struture of the Cholesky fator, andoptimize the (2D) distributed data strutures and ommuniation pattern. Researhershave been quite suessful in ahieving \salable" performane for sparse Choleskyfatorization; available odes inlude CAPSS [38℄, MUMPS-SYM [3℄, PaStix [40℄,PSLDLT [54℄, and PSPACES [36℄.In ontrast, for nonsymmetri or inde�nite systems, few distributed-memory odesexist. They are more ompliated than Choleksy for at least two reasons. First andforemost, some kind of numerial pivoting is neessary for stability. Classial partialpivoting [33℄ or the sparse variant of threshold pivoting [23℄ typially ause the �ll-ins andworkload to be generated dynamially during fatorization. Therefore, we must eitherdesign dynami data strutures and algorithms to aommodate these �ll-ins [3℄, or elseuse stati data strutures whih an grossly overestimate the true �ll-in [26, 35℄. Theseond ompliation is the need to handle two fatored matries L and U , whih arestruturally di�erent yet losely related to eah other in the �lled pattern. Unlike theCholesky fator whose minimum graph representation is a tree (alled the eliminationtree, or etree for short) [48℄, the minimum graph representations of the L and U fatorsare direted ayli graphs (alled elimination DAGs, or edags for short) [31, 32℄.Despite these diÆulties, researhers have been addressing these issues suessfullyfor sequential and shared memory mahines; available odes inlude MA41 [6, 5℄,PARDISO [57℄, SPOOLES [9℄, SuperLU [19℄, SuperLU MT [20℄, UMFPACK/MA38 [15℄,and WSMP [34℄. 3

In our earlier odes SuperLU (serial) and SuperLU MT (shared-memory), we devisedeÆient \symboli" fatorization algorithms to aommodate the dynamially generated�ll-ins due to partial pivoting. The symboli algorithm ould not be de-oupled from thenumerial fatorization; instead, it was interleaved with the numerial algorithm as thenumerial fatorization proeeds. These symboli fatorization algorithms are not suitablefor distributed-memory mahines, beause they involve �ne-grained memory aess andsynhronization to manage the data strutures and identify task and data dependenies.This would generate large numbers of small messages.Therefore, for SuperLU DIST whih is targeted for large-sale distributed-memorymahines, we use a stati pivoting approah, alled GESP (Gaussian Elimination withStati Pivoting), proposed earlier by the authors [46℄. We parallelized the GESP algorithmusing MPI. Our parallelization strategies enter around the salability onern. We usea 2D blok-yli mapping of a sparse matrix to the proessors, and designed an eÆientpipelined algorithm to perform parallel fatorization. With GESP, the parallel algorithmand ode are muh simpler than if we had to pivot dynamially. The main algorithmifeatures of SuperLU DIST solver are summarized as follows:� supernodal fan-out (right-looking) based on elimination DAGs,� stati pivoting with possible half-preision perturbations on the diagonal,� use of an iterative algorithm using the LU fators as a preonditioner, in order toguarantee stability,� stati 2D irregular blok-yli mapping using supernodal struture, and� loosely synhronous sheduling with pipelining.In partiular, stati pivoting an be performed before numerial fatorization, allowing usto use all the tehniques in good parallel sparse Cholesky odes: hoie of a (symmetri)permutation to minimize �ll-in and maximize parallelism, preomputation of the �llpattern and optimization of 2D distributed data strutures and ommuniation patterns.The rest of the paper is organized as follows. In Setion 2 we demonstrate thenumerial stability, the sequential runtime eÆieny and the ordering shemes of theGESP algorithm. In Setion 3, we present an MPI implementation of the distributedalgorithms for LU fatorization and triangular solutions. In Setion 4, we present andanalyze the parallel performane and salability results. Setion 5 desribes the relatedwork and ompares SuperLU DIST with some other solvers. The last setion presents futurework. Finally, an appendix gives a theoretial algorithm that shows how all pivoting antheoretially be avoided at the ost of using dynami preision to guarantee stability.2 The GESP algorithmReall that the role of numerial pivoting is to avoid small pivots and ontrol pivotgrowth in the fators. Dynami pivoting is not the only means to ahieve this goal.We an use other algorithms to pre-permute large elements on the diagonal, therebypartially ful�ling the role of dynami pivoting. Furthermore, when large pivot growth stillours, there are inexpensive methods to tolerate and ompensate for the growth, suh as4

iterative methods preonditioned by the omputed LU fators, of whih GMRES [55℄ anditerative re�nement are two examples. This observation led us to design a stati pivotingfatorization algorithm, alled GESP [46℄. We demonstrated that GESP works well forpratial matries.In our GESP algorithm, sine pivots are hosen from the main diagonal, the �ll-in positions an be determined before the numerial fatorization, and so the symbolifatorization an be de-oupled from numerial fatorization. This enables stati datastruture optimization, graph manipulation and load balaning in a similar way as parallelsparse Cholesky implementations.Figure 1 skethes our GESP algorithm. To motivate step (1), reall that a diagonallydominant matrix is one where eah diagonal entry aii is larger in magnitude than the sumof magnitudes of the o�-diagonal entries in its row (Pj 6=i jaij j) or olumn (Pj 6=i jajij). Itis known that hoosing diagonal pivots ensures stability for suh matries [18, 33℄. Wetherefore expet that if eah diagonal entry an somehow be made larger relative to theo�-diagonals in its row or olumn, then diagonal pivoting will be more stable. The purposeof step (1) is to hoose the diagonal saling matries Dr and D, and the permutation Prto make eah aii larger in this sense. We have experimented with a number of heuristialgorithms implemented in the routine MC64 (available from HSL [41℄) [22℄. All dependon the following graph representation of an n � n sparse matrix A: it is represented asan undireted weighted bipartite graph with one vertex for eah row, one vertex for eaholumn, and an edge with appropriate weight onneting row vertex i to olumn vertexj for eah nonzero entry aij . Finding a permutation Pr that puts large entries on thediagonal an thus be transformed into a weighted bipartite mathing problem on thisgraph. In MC64, there are algorithms that hoose Pr to maximize di�erent properties ofthe diagonal of PrA, suh as the smallest magnitude of any diagonal entry, or the sumor produt of magnitudes. But the best algorithm in pratie is the following (option 5of MC64): it hooses Pr to maximize the produt of the diagonal entries, and hooses Drand D simultaneously so that eah diagonal entry of PrDrAD is �1, eah o�-diagonalentry is bounded by 1 in magnitude. The implementation is based on the algorithm byOlshowka and Neumaier [50℄. We report results for this algorithm only. The worst aseserial omplexity of this algorithm is O(n �nnz(A) � logn), where nnz(A) is the number ofnonzeros in A. In pratie it is muh faster; the atual timings appear later in Figure 7. InSetion 5, we desribe the work of others who experimented this idea in the sparse diretand iterative solvers.We note that the diagonal salings Dr and D are needed in the algorithm so that(1) the value of kAk1 in step (4) makes sense (see below) and (2) the estimated onditionnumber from step (7) is not overly pessimisti when the rows and olumns are badlysaled (i.e. Dr and D are far from multiplies of the identity). Indeed, in the absene ofover/underow, as long as the diagonal entries of Dr and D are hosen to be multiples ofthe radix (typially 2), and no small pivots are enountered in step (4) (see below), thenidential rounding errors will be made in parts (4) through (6) of the algorithm whetheror not Dr and D are applied to A in step (1).Step (2) is standard in sparse diret solvers. The olumn permutation P an beobtained from any �ll-reduing heuristi. In our ode, we provide the minimum degreeordering algorithm [47℄ on the struture of AT + A. The ode an also take as input anordering based on some other algorithm, suh as the nested dissetion on AT +A [27, 39,5

Figure 1: The outline of the GESP algorithm.(1) Perform row/olumn equilibration and row permutation: A Pr �Dr �A �D,where Dr and D are diagonal matries and Pr is a row permutation hosento make the diagonal large ompared to the o�-diagonal.(2) Find a olumn permutation P to preserve sparsity: A P �A � PT(3) Perform symboli analysis to determine the nonzero strutures of L and U .(4) Fatorize A = L �U with ontrol of diagonal magnitude:if (jaiij < p" � kAk1) thenset aii to p" � kAk1endif(5) Perform triangular solutions using L and U .(6) If needed, use an iterative solver like GMRES or iterative re�nement (shown below)iterate:r = b� A � x : : : sparse matrix-vetor multiplySolve A � dx = r : : : triangular solutionberr = maxi jrji(jAj�jxj+jbj)i : : : omponentwise bakward errorif (berr > " and berr � 12 � lastberr) thenx = x+ dxlastberr = berrgoto iterateendif(7) If desired, estimate the ondition number of A
6

43℄. Note that we also apply P to the rows of A to ensure that the large diagonal entriesobtained from step (1) remain on the diagonal.In step (4), we perform fatorization using diagonal pivots. The tiny pivots enounteredduring elimination an be set to p" �kAk1, where " is mahine preision. This is equivalentto a small (half preision) perturbation to the original problem, and trades o� somenumerial stability for the ability to keep pivots from getting too small.In step (6), we perform a few steps of an iterative method like iterative re�nement(shown) or GMRES [55℄ if the solution from step (5) is not aurate enough. Thetermination riterion is based on the omponentwise bakward error berr [8, 18℄. Theondition berr � " means that the omputed solution is the exat solution of a slightlydi�erent sparse linear system (A + ÆA)x = b + Æb where ÆA hanges only eah nonzeroentry aij by at most one unit in its last plae, and the zero entries are left unhanged;thus one an say that the answer is as aurate as the data deserves. We terminate theiteration when the bakward error berr is smaller than mahine epsilon, or when it doesnot derease by at least a fator of two ompared with the previous iteration. The lattertest is to avoid possible stagnation. (Figure 5 shows that berr is always small.) Note thatdemanding berr � " is very stringent, and in pratie, the re�nement an be terminatedearlier.When a small diagonal is enountered and set to p" � kAk1, this may ause a largebakward error in A, but this error is only large in norm, not in rank. In other words, thedi�erene between A and the produt of the omputed fators L �U is small in rank. Thismakes the LU fatorization an exellent preonditioner of A for a method like GMRES,whih (in the absene of roundo�) takes no more steps to onverge than the di�erene inrank between L �U and A. This will be borne out in the experiments below.2.1 Numerial stabilityIn this subsetion, we illustrate the numerial stability and runtime of our GESP algorithmon 68 unsymmetri matries drawn from a wide variety of appliations. The appliationdomains of the matries are given in Table 1. Most of them, exept for wu, an be obtainedfrom the Harwell-Boeing Colletion [24℄ and the olletion of Davis [16℄. Matrix wu wasprovided by Yushu Wu from the Earth Sienes Division of Lawrene Berkeley NationalLaboratory. Figure 2 plots the dimension, nnz(A), and nnz(L+U) (i.e., the �ll-ins, afterthe minimum degree ordering on AT + A). The matries are sorted in inreasing orderof the LU fatorization time of the sequential GESP algorithm. The matries of mostinterest for parallelization are the ones that take the most time, i.e., the ones towards theright of this graph. It is lear that the matries with larger numbers of nonzeros requiremore time to fatorize. The timing results reported in this subsetion are obtained on asingle IBM 375 MHz POWER3 proessor, running AIX operating system. The proessorhas a 64 KB L1 data ahe and an 8 MB L2 ahe.Detailed performane results from this setion in tabular format are available athttp://www.ners.gov/�xiaoye/SuperLU/GESP.As shown in Figure 1, our algorithm an be used in many \on�gurations":� We may or may not perform step (1). 7

Disipline Matriesuid ow, CFD af23560, bbmat, bramley1, bramley2, ex11, ex19, �dap011, �dap019,�dapm11, �dapm29, garon2, goodwin, graham1, inaura, inv-extrusion-1,lnsp3937, lns 3937, mixing-tank, raefsky3, raefsky4, rma10, venkat01, wuiruit simulation add32, gre 1107, gre 115, jpwh 991, memplus, onetone1, onetone2, twotonedevie simulation el32, wang3, wang4hemial engineering extr1, hydr1, lhr01, lhr71, radfr1, rdist1, rdist2, rdist3a, west2021hemial proess bayer01, bayer02, bayer04petroleum engineering orsreg 1, saylr4, sherman3, sherman4, sherman5�nite element PDE av4408, av11924MagnetoHydroDynamis mhd500sti� ODE fs 541 2Olmstead ow model olm5000aeroelastiity tols4000reservoir modelling pores 2rystal growth simulation ry10000power ow modelling gemat11dieletri waveguide dw8192 (eigenproblem)astrophysis mfeplasma physis utm5940demography psmigr 1, psmigr 2, psmigr 3eonomis mahindas, orani678Table 1: Test matries and their disiplines.� One of many ordering shemes (nested dissetion, minimum degree et.) may beused in step (2).� We may or may not replae tiny pivots with p" � kAk1 in step (4).� We may apply several kinds of iteration (or none at all) in step (6).In this setion we report on several on�gurations of the algorithm. First, �gures 3through 7 show data for the algorithm as shown in Figure 1, inluding iterative re�nementin step (6), whih is often the fastest on�guration. However, for a few matries (seebelow) to get a stable solution it was important not to replae tiny pivots in step (4)(for other matries it was important to replae tiny pivots as in step (4), and for mostmatries it did not matter). So the data in �gures 3 through 7 atually reets two possibleon�gurations, depending on the matrix (replaing tiny pivots in step (4) or not).Seond, we ran all the matries with the same on�guration of the algorithm, inwhih restarted GMRES was used in step (6). All matries were solved stably in thison�guration, though it was sometimes slower than iterative re�nement.For the data reported in this setion, we use minimum degree ordering on the strutureof AT +A.Now we onsider the �rst on�guration, when iterative re�nement was used. Amongthe 68 matries, many would get wrong answers or fail ompletely (via division by a zeropivot) without any pivoting or other preautions. In twenty six of these matries, someof the zeros present in the initial diagonal ontinue to remain zero during elimination,and in another group of two matries (bbmat and orsreg 1), new zeros are reated on thediagonal during elimination. Therefore, not pivoting at all would fail ompletely on these29 matries. For our experiment, the right-hand side vetor is generated so that the true8

solution xtrue is a vetor of all ones. IEEE double preision is used as the working preision,with " � 10�16. All the test matries have ondition numbers bounded by 1" . Figure 3shows the number of iterations taken in the iterative re�nement step. The terminationriteria is that the bakward error berr = maxi jrji(jAj�jxj+jbj)i � " or berr does not dereaseby one-half of the previous step. For most matries, the iteration terminates with no morethan 3 steps: 9 matries require 1 step, 46 matries require 2 steps, 5 matries require3 steps, and 8 matries require more than 3 steps. In the ase of onventional Gaussianelimination with partial pivoting (GEPP) (as in sequential SuperLU), 4 matries require 1step, 63 matries require 2 steps, and 1 matrix requires 3 steps.For eah matrix, we present two error metris, in Figure 4 and Figure 5 respetively, toassess the auray and stability of GESP. Figure 4 plots the error from GESP versus theerror from GEPP for eah matrix: a dot on the diagonal means the two errors were thesame, a dot below the diagonal means GESP is more aurate, and above means GEPPis more aurate. Figure 4 shows that the error of GESP is at most a little larger, andan be smaller (36 out of 68 matries), than the error from GEPP. Figure 5 shows thatthe omponentwise bakward error [18℄ is also small, usually near " and never larger than10�13.Figure 6 ompares the pivot growth of GESP versus that of GEPP. Here, the pivotgrowth is de�ned as jjU jj1jjAjj1 . For 31 matries, GESP and GEPP have omparable pivotgrowth. For 10 matries, GESP has more than 10 orders of magnitude larger pivot growththan GEPP, up to 1024. Even in the presene of suh large pivot growth, the iterativere�nement an e�etively reover any loss of auray during the fatorization.Note that Figure 1 shows all the tehniques that are implemented in the ode. Somemay not be needed for some problems. Our experiment shows that the half-preisionperturbation introdued in step (4) is not needed for most matries. It is neessary for�ve matries (�dapm11, goodwin, graham1, inv-extrusion-1 and mixing-tank), but is badfor four others (ex11, �dap011, inaura and raefsky4). The rest of the matries areinsensitive to this option, beause either no tiny pivots our or it does not matter whatyou do. Therefore, in our ode, we provide a exible interfae so the user is able to turnon or o� any of these options (steps (1), (2), (6), and the diagonal perturbation in step(4)).Now we turn to the seond on�guration of our algorithm, in whih restartedGMRES [55℄ was used in step (6) (we used the version from SPARSKIT [56℄). Therestart value is 50. Here, our LU fatorization is used in preonditioning for GMRES.The onvergene test is based on residual norm: jjrijj2 � rtol � jjr0jj2 + atol, where therelative tolerane rtol and absolute tolerane atol are 10�6 and 10�10. For the four \bad"matries above (ex11, �dap011, inaura and raefsky4), GMRES takes 497, 530, 5, and41 iterations to onverge. The number of tiny pivots replaed in step (4) for these 4matries was 8666, 8602, 3, and 51, respetively. For most of the other matries, GMRESterminates within two iterations. This shows that with one parameter setting, we ansolve all the test problems aurately. In the software, we plan to provide an interfae tothe user with the options of using various iterative shemes.We now evaluate the runtime of eah step of GESP in Figure 1, in our �rst on�gurationwith iterative re�nement in step (6). This is done with respet to the sequential runtime.For large enough matries, the LU fatorization in step (4) dominates all the other steps,so we will measure the time of eah step with respet to step (4).9

Figure 2: Charateristis of the matries.
10

−2
10

0
10

2
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

LU factorization time in seconds

of nonzeros in A
of nonzeros in L+U

Figure 3: Iterative re�nement steps.
10

0
10

5
10

10
10

15
1

2

3

4

5

6

7

8

Condition number

N
u

m
b

e
r

o
f
ite

ra
tiv

e
 r

e
fin

e
m

e
n

t
st

e
p

s GESP
GEPP

Figure 4: The error jjxtrue�xjj1jjxjj1 .
10

−15
10

−10
10

−5
10

0

10
−15

10
−10

10
−5

10
0

Error from GEPP

E
rr

o
r

fr
o

m
 G

E
S

P

Figure 5: The bakward errormaxi jA�x�bji(jAj�jxj+jbj)i .
10

0
10

5
10

10
10

15
10

−17

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

Condition number

B
a

ck
w

a
rd

 e
rr

o
r

GESP
GEPP

10

Figure 6: The ratio of pivot growth of GESPversus GEPP.
10

0
10

5
10

10
10

15
10

−5

10
0

10
5

10
10

10
15

10
20

10
25

Condition number

P
iv

o
t
G

ro
w

th
 :
 G

E
S

P
 v

s
G

E
P

P

Figure 7: The times for the other steps of GESP,as fration of the fatorization time.
10

−2
10

−1
10

0
10

1
10

2
10

3

10
−2

10
−1

10
0

10
1

LU factorization time in seconds
F

ra
ct

io
n

 o
f
L

U
 f
a

ct
o

ri
za

tio
n

 t
im

e

MC64
MMD(A’+A)
Symbolic
Tri. soln.
Iter. refine.Both row and olumn permutation algorithms in steps (1) and (2) (omputing Pr andP) are not easy to parallelize (their parallelization is future work). Fortunately, theirmemory requirement is just O(nnz(A)) [17, 21℄, as opposed to the superlinear memoryrequirement for L and U fators, so in the meantime we an run the ordering algorithmson a single proessor.Figure 7 shows the times spent in the other steps of GESP as the fration of thesequential time for the fatorization step. The times are signi�ant for the small problems,but drops to smaller fration as the problems beome larger. Only the large matries areof interest for parallel mahines and are also the ones whih SuperLU DIST is designed for.In an appendix, we present a theoretial algorithm that provides a guarantee of stabilitywhile using stati pivoting, but variable preision. The purpose of this appendix is toshow that dynami pivoting may indeed be avoided without sari�ing stability. We notethat even onventional partial pivoting does not absolutely guarantee stability, beauseexponential pivot growth is still possible, while very unlikely. It is a risk most users anlive with, as we suggest is also the ase for stati pivoting.2.2 Opportunities for better �ll-reduing orderingsFor the unsymmetri fatorizations, the preordering for sparsity is less well understoodthan that for the Cholesky fatorization. Most unsymmetri ordering methods use thesymmetri ordering tehniques on a symmetrized matrix (e.g., ATA). Now we examinethe strutural relationships of several matries, and desribe the rationale behind theabove ordering methods. Consider the LU fatorization with partial pivoting PrA = LU ,where Pr is a permutation matrix desribing row interhanges. Also onsider the Choleskyfatorization ATA = RTR, and the QR fatorization A = QR omputed by Householdertransformation.1 Q is represented by the \Householder matrix" H whose olumns are the1The R fator in the Cholesky fatorization and the R fator in the QR fatorization are idential.11

Householder vetors. The nonzero struture for L and U annot be predited immediatelyfrom the nonzero struture of A, beause the row interhanges during the fatorizationdepend on the numerial values. However, for any row interhanges, the strutures of Land U are subsets of the strutures of H (or RT) and R respetively [28, 30℄. Therefore, agood symmetri ordering P onATA (either based on minimum degree or nested dissetion)that preserves the sparsity of R an be applied to the olumns of A, forming APT , so thatthe LU fatorization of the olumn-permuted matrix APT is sparser than that of theoriginal matrix A. This is due to the relation P(ATA)PT = (APT)T (APT). A drawbakwith the above approah is that omputing the struture of ATA an be expensive bothin time and spae sine ATA may be muh denser than A. Davis et al. developed analgorithm, alled COLAMD, to ompute P diretly from the sparsity struture of A [17℄.It is based on the same strategy, that is, to make the \upper bound" matries H and Rsparser, but uses better heuristis. Both serial SuperLU and SuperLU MT have inorporatedboth olumn ordering methods; i.e., the user an hoose to obtain a olumn ordering byalling MMD [47℄ on ATA, or by alling COLAMD.Sine the \ATA{based ordering" methods attempt to aount for all possible rowinterhanges, it may be too generous when only a limited amount of pivoting is needed.This is espeially true for our GESP algorithm, in whih the row interhanges areperformed prior to the fatorization. During the fatorization, the pivots are hosen solelyon the main diagonal. A better �ll-reduing ordering would be based on the symmetrimatrix AT +A, instead of ATA, beause the symboli Cholesky fator of AT +A is a muhtighter upper bound on the strutures of L and U than that of ATA. Note that in thisase, we perform a symmetri permutation PAPT so that the entries of the main diagonalof the permuted matrix remain the same as those in the original matrix A. Table 2 liststhe amount of �ll in the LU fatorization using di�erent ordering methods. It is lear thatthe ordering based on AT + A is muh better than those based on ATA. Sometimes theimprovement an be more than a fator of two, see matries inv-extrusion-1, mixing-tankand wang4. The only exeption is fidapm11, for whih the three ordering methods areomparable. Nonzeros in L + U (106)(ATA){based (AT + A){basedMatrix MMD COLAMD MMD AMDbbmat 49.1 49.8 41.1 40.2el32 73.5 72.6 42.4 42.7fidapm11 26.4 24.3 24.8 24.8inv-extrusion-1 53.7 62.7 29.1 28.4mixing-tank 86.9 81.4 40.7 41.2rma10 14.7 16.3 9.3 9.3twotone 22.6 18.3 11.4 11.9wang4 27.7 25.5 10.5 10.7Table 2: Impat of di�erent ordering methods on the size of the fators; the GESPalgorithm is used.Although the (AT + A){based orderings improve the ordering quality, it still may notbe the most e�etive �ll-reduing method, sine symmetrization AT +A may destroy the12

sparsity of matrix A, partiularly when A is highly unsymmetri. Reently, motivatedby the GESP algorithm and an unsymmetrized multifrontal method [5℄, Amestoy, Liand Ng [4℄ proposed a new symmetri ordering sheme that does not require anysymmetrization of the underlying matrix, that is, it works diretly on matrix A itself. Thesheme is similar to the Markowitz sheme [49℄ but limits the pivot searh to the entrieson the main diagonal. The eÆient implementation is similar to that of approximateminimum degree (AMD) [2℄, but it generalizes the (symmetri) quotient graph to thebipartite quotient graph to model the unsymmetri node elimination. The preliminaryresults show that the new ordering method redues the amount of �ll by 10% on averagefor very unsymmetri matries, when ompared with applying AMD to AT + A. In thefuture, we will inorporate this new ordering algorithm into SuperLU DIST.The better hoie of sparsity ordering algorithm is indeed an an added bene�t of theGESP algorithm over GEPP. Throughout the paper, we only report the results using theordering algorithms based on AT + A.3 Parallel algorithmsIn this setion, we desribe our design, implementation and the performane of thedistributed algorithms for two major steps of the GESP method: sparse LU fatorization(step (4)) and sparse triangular solve (step (5)). Our implementation uses MPI [58℄ toommuniate data. We have tested the ode on a number of platforms, suh as Cray T3E,IBM SP, and Berkeley NOW.3.1 Matrix to proessor mapping and distributed data strutureWe distribute the matrix in a two-dimensional blok-yli fashion. In this distribution,the P proesses are arranged as a 2D proess grid of shape nprow � npol. The matrixis partitioned into bloks of submatries. The blok de�nition is based on the notion ofunsymmetri supernode �rst introdued in [19℄; it is de�ned over the matrix fator L. Asupernode is a range (r : s) of olumns of L with the triangular blok just below thediagonal being full, and the same nonzero struture elsewhere (either full or zero). Thissupernode partition is used as the blok partition in both row and olumn dimensions,that is the diagonal bloks are square. If there are N supernodes in an n-by-n matrix,the matrix will be partitioned into N2 bloks of non-uniform size. The size of eah blokis matrix dependent. The o�-diagonal bloks may be retangular and need not be full.Furthermore, the olumns in a blok of U do not neessarily have the same row struture.We all a dense sub-olumn in a blok of U a segment. By blok-yli layout, we meanblok (I; J) is mapped onto the proess at oordinate ((I � 1) mod nprow, (J � 1) modnpol) of the proess grid. During fatorization, blok L(I; J) is only needed by theproesses on the proess row ((I � 1) mod nprow), thus restriting the ommuniation.Similarly, blok U(I; J) is only needed by the proesses on the proess olumn ((J � 1)mod npol). Figure 8 illustrates suh a 2D blok-yli layout.Although a 1D partition is more natural to sparse matries and is muh easier toimplement, a 2D layout strikes a good balane among loality (by bloking), load balane(by yli mapping), and lower ommuniation volume (by 2D mapping). 2D layouts13

Figure 8: The 2D blok-yli layout and the data struture to store a loal blok olumnof L.
0 1

43

2

...

1 2

...

4

0

2

3

021020

34343

4

1 020210

33

0210

4

0

33 43

0

1

2 0

1

1

Process Mesh

Global Matrix

L

5

5

5 5

U
5

5

5

index

Storage of block column of L

of blocks

nzval

block #

row subscripts

i1
i2

of full rows

block #

row subscripts

i1
i2

of full rows

LDA of nzval

were demonstrated to be more salable in the implementations for dense matries [13℄ andsparse Cholesky fatorization [37, 54℄.We now desribe the distributed data strutures to store loal submatries. In the 2Dbloking, eah blok olumn of L resides on more than one proess, namely, a olumn ofproesses. For example, in Figure 8, the seond blok olumn of L resides on the olumnproesses f1, 4g. Proess 1 only owns two nonzero bloks, whih are not ontiguous inthe global matrix. The shema on the right of Figure 8 depits the data struture to storethe nonzero bloks on a proess. Besides the numerial values stored in a Fortran-stylearray nzval[℄ in olumn-major order, we need the information to interpret the loationand row subsript of eah nonzero. This is stored in an integer array index[℄, whihinludes the indies for the whole blok olumn and for eah individual blok in it. Thezero bloks are not stored; neither do we store the zeros in a nonzero blok. Both lowerand upper triangles of the diagonal blok are stored in the L data struture. A proessowns dN=npole blok olumns of L, so it needs dN=npole pairs of index/nzval arrays.For matrix U , we use a row oriented storage for the blok rows owned by a proess,although for the numerial values within eah blok we still use olumn-major order.Similarly to L, we also use a pair of index/nzval arrays to store a blok row of U . Dueto asymmetry, eah nonzero blok in U has the skyline struture as shown in Figure 8(see [19℄ for details on the skyline struture). Therefore, the organization of the index[℄array is di�erent from that for L, whih we omit showing in the �gure.The user an ontrol the partitioning and mapping. Firstly, the user an setthe maximum blok size parameter. The symboli fatorization algorithm identi�essupernodes, and hops the large supernodes into smaller ones if their sizes exeed thisparameter. The supernodes may be smaller than this parameter due to sparsity and thebloks are then de�ned by the supernode boundaries. (That is, supernodes an be smallerthan the maximum blok size but never larger.) Our experiene has shown that a goodvalue for this parameter on the IBM SP2 is around 40, while on the Cray T3E it is around24, beause T3E has smaller ahes on eah proessor. Seondly, the user an set the14

shape of the proess grid, suh as 2� 3 or 3� 2. Better performane is obtained when wekeep the proess row dimension slightly smaller than the proess olumn dimension. Sinewe do no dynami pivoting, blok partitioning and the setup of the data struture anall be performed in the symboli algorithm. This is muh heaper to exeute as opposedto partial pivoting where the size of the data struture annot be foreast and must bedetermined on the y as fatorization proeeds.3.2 Numerial kernel based on Level 3 BLASThe main numerial kernel during the fatorization is a blok update orresponding to therank-k update to the Shur omplement:A(I; J) A(I; J)� L(I;K)� U(K; J) ;see Figure 9. In earlier versions of SuperLU, this omputation was based on Level 2.5BLAS. That is, we all the Level 2 BLAS routine GEMV (matrix-vetor produt) butwith multiple vetors (segments), and the matrix L(I;K) is kept in ahe aross thesemultiple alls. This to some extent mimis the Level 3 BLAS GEMM (matrix-matrixprodut) performane. However, the di�erene between Level 2.5 and Level 3 is still quitelarge on many mahines, for example the IBM SP2. This motivated us to modify the kernelin the following way in order to use Level 3 BLAS. For best performane, we distinguishtwo ases orresponding to the two shapes of a U(K; J) blok.� The segments in U(K; J) are of same height, as shown in Figure 9 (a).Sine the nonzero segments are stored ontiguously in memory, we an all GEMMdiretly, without performing operations on any zeros.� The segments in U(K; J) are of di�erent heights, as shown in Figure 9 (b).In this ase, we �rst opy the segments into a temporary working array T , withsome leading zeros padded if neessary. We then all GEMM using L(I;K) andT (instead of U(K; J)). We perform some extra oating-point operations for thosepadding zeros. The opying itself does not inur a runtime ost, beause the datamust be loaded in the ahe anyway. The working storage T is bounded by themaximum blok size, whih is a tunable parameter. For example, we usually use40� 40 on the IBM SP2 and 24� 24 on the Cray T3E.Compared with the Level BLAS 2.5 kernel, this Level 3 BLAS kernel improved theuniproessor fatorization time by about 20% to 40% on the IBM SP2. A performanegain was also observed on the Cray T3E. It is lear that the extra operations are wello�set by the bene�t of the more eÆient Level 3 BLAS routines.3.3 Parallel fatorization with pipeliningIn this subsetion, we �rst desribe in detail how the parallel fatorization algorithmutilizes the pipeline e�et. Then we disuss how to improve the performane robustnessby introduing immediate sends and reeives. The following notation will be used inFigure 11 and throughout the disussion. Matlab notation is used for integer ranges andsubmatries. 15

Figure 9: Illustration of the numerial kernels used in SuperLU DIST.
(b) U(K, J) =

COPY

A(I, J) L(I, K) U(K, J)

− x

(a) U(K, J) =

= T� Proess IDs{ PROC(K) : the set of olumn proesses that own blok olumn KFor example, in Figure 8, PROC(3) = PROC(6) = f2; 5g.{ PROCr(K) : the set of row proesses that own blok row KFor example, in Figure 8, PROCr(1) = PROCr(3) = f0; 1; 2g.{ PK = PROC(K) \ PROCr(K){ me : the proess rank as illustrated in Figure 8� Tasks labelled in Figure 11{ F (: : :) : Fatorize a blok olumn or a blok row2{ S (: : :) : Send a blok olumn or a blok row{ R (: : :) : Reeive a blok olumn or a blok row{ U(k)(: : :) : Update the trailing submatrix using L(:; K) and U(K; :)The parallel sparse LU fatorization algorithm is right-looking and loosely synhronous,as shown in Figure 10. It loops over the number of supernodes. The K-th iteration ofthe loop onsists of three steps: (1) the proess set PROC(K) fators the blok olumnL(K : N;K); (2) the proess set PROCr(K) fators the blok row U(K;K + 1 : N);and (3) all the proesses perform the Shur omplement update by L(K + 1 : N;K) andU(K;K + 1 : N). The last step represents most of the work and also exhibits moreparallelism than the other two steps.In the atual implementation we use a pipelined organization so that proessesPROC(K+1) will start step (1) of iteration K+1 as soon as the rank-k update (step (3))of iteration K to blok olumn K+1 �nishes, before ompleting the update to the trailingmatrix A(K + 1 : N;K + 2 : N) owned by PROC(K + 1). Figure 11 illustrates this ideausing Steps K and K + 1 of the algorithm. In the �gure, we show the ativities of the2There is also ommuniation involved in this task, but it is negligible, and so is omitted in thedisussion. 16

Figure 10: The parallel right-looking LU fatorization.for blok K = 1 to N do(1) if [me 2 PROCC(K) ℄ thenFatorize blok olumn L(K : N;K)Send L(K : N;K) to the proesses in my row who need itelseReeive L(K : N;K) from one proess in PROCC(K)endif(2) if [me 2 PROCR(K) ℄ thenFatorize blok row U (K;K + 1 : N)Send U (K;K + 1 : N) to proesses in my olumn who need itelseReeive U (K;K + 1 : N) from one proess in PROCR(K) if I need itendif(3) for J = K + 1 to N dofor I = K + 1 to N doif [me 2 PROCR(I) and me 2 PROCC(J)and L(I;K) 6= 0 and U (K; J) 6= 0 ℄ thenUpdate trailing submatrix A(I; J) A(I; J) � L(I;K) � U (K; J)endifend forfour proess groups along the time line. The path marked with the dashed line representsthe ritial path, that is, the parallel runtime ould be redued only if the ritial pathis shortened. The blok fatorization tasks \F (: : :)" are usually on the ritial path,whereas the update tasks \U (: : :)" are often overlapped with the other tasks. There islak of parallelism for the \F (: : :)" tasks in Steps (1) and (2), beause only one set ofolumn proesses or row proesses partiipate in these tasks. This pipelining mehanismalleviates this problem. For instane, on 64 proessors of the Cray T3E, we observedspeedups of between 10% and 40% over the non-pipelined implementation as in Figure 10.In an earlier version of the ode, we used MPI's standard send and reeive operationsmpi send and mpi rev for the message transfer tasks \S (: : :)" and \R (: : :)". In Figure 11,we see idle time (longer send) during the sending of \S (L(:; K+1))" for proess PK+1 onthe ritial path. This ould happen if the sender and reeiver are required to handshakebefore proeeding, as is the ase with large messages that exeed the MPI internal bu�ersize [7℄. That is, proess PK+1 posts mpi send long before proesses PROCr(K) post themathing mpi rev, and the sender must be bloked to wait for mpi rev. To avoid thissynhronization ost, we introdued the nonbloking send and reeive primitives, mpi isendand mpi irev as follows.� For the sender, we simply replae mpi send by mpi isend. This ould eliminate theidle time during the send \S (L(:; K + 1))" shown in Figure 11.� For the reeiver, we will post mpi irev muh earlier than we atually need the data.For example, for proesses PROCr(K) in Figure 11, we ould post \R (L(:; K+1))"before \U (A(K+1 : N;K+1 : N))". That is, as soon as we have reeived a message17

Figure 11: Illustration of the pipeline at Steps K and K + 1 during the SuperLUfatorization.
Computation

(k−1)
U

(K:N, K:N)

U
(k)

(K+1:N, K+1:N)

F (U(K+1, :))F (L(:, K+1))U
(k)

(:, K+1) U
(k)

(:, K+2:N)

R (L(:, K+1))

R (L(:, K+1))U
(k)

(K+1:N, K+1:N) F (U(K+1, :))

U
(k)

(K+1:N, K+1:N)

r PROC (K)

F (L(:, K))

Other processes

(K:N, K:N)
(k−1)

Time

U

idle Wait for synchronization

PROC c (K)

Communication

R (L(:, K))

R (L(:, K))

(K:N, K:N) R (L(:, K))

U
(k−1)

S (L(:, K))

F (U(K, :)) R (L(:, K+1))S (U(K, :))

R (U(K, :)) i d l e S (L(:. K+1))

R (U(K, :))

R (U(K, :))

Critical Path

P
K+1

using mpi wait, we will post the mpi irev for the next message, before performingthe loal omputation with the just-arrived message.To implement this idea, we need to provide user-level bu�er spae to aommodatethe messages in transit. Sine for eah proess, there is only one outstanding message tobe reeived, we only need one extra bu�er. Figure 12 skethes the pipelining algorithmusing mpi isend and mpi irev. The main di�erene from Figure 10 is in Step (3). In thenew algorithm, the original Step (3) is split into two substeps (3.1) and (3.2). Step (3.1)implements a look-ahead sheme. Here, we only update the (K+1)-st blok olumn, thenimmediately fatorize this olumn and post send and reeive of the fatorized olumn forthe (K + 1)-st iteration of the loop. This message transfer will overlap with the rest ofthe trailing submatrix update appearing in Step (3.2). In Step (1), the proesses wait forthe posted send and reeive to omplete. In partiular, mpi wait in line 9 is mathed withthe posted mpi isend in line 23 (and 3); mpi wait in line 11 is mathed with the postedmpi irev in line 25 (and 5).We observed a big performane di�erene between the bloking and nonblokingversions of the odes on the Cray T3E. With an inreasing number of proessors, themessage size is usually dereasing. We show this in Table 3, beause the smaller messagesize implies that there is less handshaking between the sender and reeiver in the blokingode. Thus, the performane gain of the nonbloking ode on a large number of proessorsis less dramati than that on a smaller number of proessors. The largest performane gainours at 4 proessors where the nonbloking ode is almost twie as fast as the blokingode. 18

Figure 12: Parallel LU fatorization with nonbloking send and reeive./* |- Set up the initial stage for the pipeline |- */1. if [me 2 PROC(1) ℄ then2. Fatorize blok olumn L(1 : N; 1)3. Post send L(1 : N; 1) to the proesses in my row who need it ({ mpi isend {)4. else5. Post reeive L(1 : N; 1) from one proess in PROC(1) if I need it ({ mpi irev {)6. endif/* |- Main pipeline loop |- */7. for blok K = 1 to N do8. (1) if [me 2 PROC(K) ℄ then9. Wait for the posted send of L(K : N;K) to omplete ({ mpi wait {)10. else11. Wait for the posted reeive of L(K : N;K) to omplete ({ mpi wait {)12. endif13. (2) if [me 2 PROCr(K) ℄ then14. Fatorize blok row U (K;K + 1 : N)15. Send U (K;K + 1 : N) to proesses in my olumn who need it16. else17. Reeive U (K;K + 1 : N) from one proess in PROCr(K) (if I need it)18. endif19. (3.1) if [K + 1 � N ℄ then/* |- Fator-ahead sheme |- */20. if [me 2 PROC(K + 1) ℄ then21. Update (K + 1)-st olumn A(:;K + 1) A(:;K + 1)� L(:;K) � U (K;K + 1)22. Fatorize blok olumn L(:;K + 1)23. Post send L(:;K + 1) to the proesses in my row who need it ({ mpi isend {)24. else25. Post reeive L(:;K + 1) from one proess in PROC(K + 1) ({ mpi irev {)26. endif27. endif28. (3.2) for J = K + 2 to N do29. for I = K + 1 to N do30. if [me 2 PROCr(I) and me 2 PROC(J)31. and L(I;K) 6= 0 and U (K; J) 6= 0 ℄ then32. Update trailing submatrix A(I; J) A(I; J)� L(I;K) �U (K; J)33. endif34. end for35. end for36. end for 19

Matrix Ordering Number of proessors4 8 16 32 64bbmat AMD 0.19 0.18 0.09 0.09 0.05el32 AMD 0.32 0.32 0.16 0.16 0.09inv-extrusion-1 AMD 0.24 0.24 0.12 0.12 0.07mixing-tank AMD 0.32 0.33 0.17 0.16 0.09Table 3: Maximum size of the message (in Mbytes) during the fatorization.Figure 13: Parallel lower triangular solve L � x = b.1. Let myol (myrow) be my proess olumn (row) oordinate in the proess grid2. x = b; lsum = 0/* |- Compute leaf nodes |- */3. for blok K = 1 to N4. if (myrow = (K mod nprow) and myol = (K mod npol) and frev[K℄ = 0)5. x(K) = L(K;K)�1 � x(K)6. Send x(K) to the olumn proesses PROCC(K)7. endif8. end for/* |- Compute internal nodes |- */9. while (I have more work) do10. Reeive a message11. if (message is x(K))12. for eah of my L(I;K) 6= 0; I > K13. lsum(I) = lsum(I) + L(I;K) � x(K)14. fmod(I) = fmod(I) � 115. if (fmod(I) = 0)16. Send lsum(I) to the diagonal proess that holds x(I)17. endif18. end for19. else if (message is lsum(K))20. x(K) = x(K)� lsum(K);21. frev(K) = frev(K) � 122. if (frev(K) = 0)23. x(K) = L(K;K)�1 � x(K)24. Send x(K) to the olumn proesses PROCC(K)25. endif26. endif27. end while 20

3.4 Parallel triangular solutionThe sparse triangular solves are also designed around the same distributed data struture(i.e., there is no data re-distribution). The forward substitution proeeds from the bottomof the elimination tree (etree of AT + A) to the root, whereas the bak substitutionproeeds from the root to the bottom. Figure 13 outlines the algorithm for sparse lowertriangular solve. The algorithm is based on a sequential \inner-produt" formulation. Inthis formulation, before we solve for the K-th subvetor x(K), the update from the inner-produt of L(K; 1 : K � 1) and x(1 : K � 1) must be aumulated and then subtratedfrom b(K). The diagonal proess, at the oordinate (K mod nprow, K mod npol) of theproess grid, is responsible for solving for x(K). Sine eah blok row L(K; 1 : K � 1)is distributed among the row proess set PROCR(K), the inner-produt is formed ina distributed way. Eah proess stores the partial sum in lsum(K) loally. After itaumulates all the produt ontributions from various bloks, it sends the partial sumto the diagonal proess that holds x(K). This is like a redution operation among arow proess set, exept that some proesses may not partiipate in this redution if theydo not have any nonzero blok in this blok row. Two ounters, frev and fmod, areused to failitate the asynhronous exeution of di�erent operations. fmod(K) ounts thenumber of loal blok produts to be summed into lsum(K). When fmod(K) beomeszero, the partial sum lsum(K) is sent to the owner of x(K). frev[K℄ ounts the numberof proess updates to x(K) to be reeived by the owner of x(K). This is needed beause,due to sparsity, not all proesses in PROCR(K) ontribute to the update. When frev(K)beomes zero, all the needed inner-produt updates to x(K) are omplete and x(K) anthen be solved.The exeution of the program is message-driven. A proess may reeive twotypes of messages, one is the partial sum lsum(K), another is the solution subvetorx(K). Appropriate ation is taken aording to the message type. The asynhronousommuniation enables large overlapping between ommuniation and omputation. Thisis very important beause the ommuniation to omputation ratio is muh higher intriangular solve than in fatorization.The algorithm for the upper triangular solve is similar, However, beause of the roworiented storage sheme used for matrix U , there is a slight ompliation in the atualimplementation. Namely, we have to build two vertial linked lists to enable rapid aessof the matrix entries in a blok olumn of U .4 Parallel performane and salabilityIn this setion, we restrit our attention to several large matries seleted from our testbedin Table 1, beause only large problems need to use parallel mahines. These matriesare representative of di�erent appliation domains. The harateristis of these matriesare given in Table 4. The on�guration of the GESP algorithm inludes steps (2) to (5)in Figure 1, and iterative re�nement in step (6). Only twotone requires step (1). Thetiming results have been obtained on the Cray T3E-900 (512 450 MHz EV-5 proessors,256 Mbytes of memory per proessor, 900 peak Megaop rate per proessor) installed atNERSC. 21

After MC64 nnz(L+ U) FlopsOrder nnz(A) NumSym StrSym StrSym (106) (109)bbmat 38744 1771722 0.02 0.54 0.50 41.1 34.0el32 51993 380415 0.66 0.93 0.93 42.4 68.3inv-extrusion-1 30412 1793881 0.73 0.97 0.86 28.4 28.0mixing-tank 29957 1995041 0.98 1.00 0.91 41.2 64.6twotone 120750 1224224 0.14 0.28 0.43 11.9 8.0wang4 26068 177196 0.19 1.00 1.00 10.7 9.1Table 4: Charateristis of the large matries. NumSym is the fration of nonzerosmathed by equal values in symmetri loations. StrSym is the fration of nonzerosmathed by nonzeros in symmetri loations.4.1 FatorizationWe show in Table 5 the fatorization time of SuperLU DIST. The symboli analysis is notyet parallel. Although it takes very little time, its parallelization would enhane memorysalability, and will be our future work. There is an on-going work by Riedy on parallelbipartite mathing algorithm [53℄. We will use it in plae of MC64 in the future. For now,we start with a opy of the entire matrix on eah proessor, and run steps (1) through(3) independently on eah proessor. The third olumn of Table 5 reports the time spentin the symboli analysis. The memory requirement of the symboli analysis is small,beause we only store and manipulate the supernodal graph of L and the skeleton graphof U , whih are muh smaller than the graphs of L and U . (In the skeleton graph ofU , only the �rst nonzero in a segment of U is stored.) The subsequent olumns in thetable show the numerial fatorization time with a varying number of proessors. For allthese matries, the algorithm an eÆiently use 128 proessors. Beyond 128 proessors,not all matries an bene�t from the additional proessor power. Only bbmat with NDordering [43℄ and el32 with AMD [2℄ an bene�t from using 512 proessors. Our lakof other large unsymmetri systems gives us few data points in this regime. To furtheranalyse the salability of our solvers, we onsider three dimensional regular grid problemsin Setion 4.4.We also observe that the algorithm does not always fully bene�t from the redutionin the number of operations potentially available from the use of a nested dissetionordering (see bbmat). There are several reasons and the improvement remains as futurework. Firstly, the algorithm does not fully exploit the parallelism of the elimination dags.Seondly, the pipelining mehanism does not fully bene�t from the sparsity of the fators(a bloked olumn fatorization should be implemented). This also explains why it doesnot fully bene�t from the better balaned tree generated by a nested dissetion ordering.To better understand the performane, we show in Table 6 the average ommuniationvolume. The speed of ommuniation an depend very muh on the number and thesize of the messages and we also indiate the maximum size of the messages and theaverage number of messages per proessor. With an inreasing number of proessors, theommuniation volume and the size of the messages usually derease, whereas the totalnumber of messages usually inrease. This implies that on larger numbers of proessors,it is important to be able to overlap the omputation with ommuniation of many small22

Matrix Ordering Symb Number of proessorsTime 1 2x2 2x4 4x4 4x8 8x8 8x16 8x32 16x32bbmat AMD 4.6 | 64.7 36.6 21.3 12.8 9.2 7.2 6.7 6.8ND 6.3 | 132.9 72.5 39.8 23.5 15.6 11.1 9.9 9.6el32 AMD 6.0 | 106.8 56.7 31.2 18.3 12.3 8.2 6.8 6.5ND 3.9 | 48.5 26.6 15.7 9.6 7.6 5.6 5.7 6.1inv-extrusion-1 ND 2.4 68.2 21.3 12.8 8.2 5.6 4.9 3.7 3.5 3.8mixing-tank ND 2.5 88.1 25.2 14.2 8.6 5.6 4.6 3.1 3.1 3.1twotone MC64+AMD 3.2 | 103.8 57.8 32.8 19.5 13.3 9.7 7.6 9.0wang4 AMD 1.3 57.0 17.8 10.6 6.8 4.8 4.3 3.4 3.1 3.7Table 5: Fatorization time (in seonds) on the Cray T3E. \|" indiates not enoughmemory. The best time is indiated in bold fae. Note: MC64 is needed only by twotone,and the time is 1.6 seonds.messages. Our use of nonbloking sends and reeives in the loosely synhronous pipeliningalgorithm failitates this.Matrix Ordering Number of proessors2x2 4x4 8x8Max Vol. #Mess Max Vol. #Mess Max Vol. #Messbbmat AMD 0.18 81 23412 0.09 61 34176 0.05 35 35035ND 0.17 82 30698 0.09 62 45598 0.04 36 50925el32 AMD 0.32 90 27437 0.16 67 37486 0.09 39 34981ND 0.25 56 28966 0.13 42 41172 0.07 24 41271inv-extrusion-1 ND 0.15 31 17774 0.08 23 25824 0.05 13 27123mixing-tank ND 0.19 40 13667 0.11 30 19635 0.05 18 19064twotone MC64+AMD 0.26 27 120006 0.15 20 153995 0.05 11 104906wang4 AMD 0.19 24 27728 0.10 18 34495 0.05 10 27561Table 6: Maximum size of the messages (Max in Mbytes), average volume ofommuniation (Vol. in Mbytes) and number of messages per proessor (#Mess).4.2 Triangular solutionIn this setion, we fous on the time spent to obtain the solution. We apply enough stepsof iterative re�nement to ensure that the omponentwise relative bakward error (berr) isless than " � 10�16. Eah step of iterative re�nement involves not only a forward and abakward solve but also a matrix-vetor produt with the original matrix. In Table 7, wereport both the time to perform one solution step (using the fatorized matrix to solveAx = b) and, the time to improve the solution using iterative re�nement (lines with \IR").On a small number of proessors (less than 8), the solve phase is almost two orders ofmagnitude less ostly than the fatorization. On a large number of proessors, beause thesolve phase is relatively less salable than the fatorization phases, the di�erene dropsto one order of magnitude. On appliations for whih a large number of solves mightbe required per fatorization this ould beome ritial for the performane and will be23

Matrix Ordering IR Number of proessors(steps) 1 2x2 2x4 4x4 4x8 8x8 8x16 8x32 16x32bbmat AMD no | 1.39 1.25 0.78 0.75 0.49 0.50 0.40 0.38IR (3) | 5.00 4.35 2.84 2.69 1.88 1.74 1.44 1.38ND no | 2.01 1.59 1.03 0.89 0.65 0.60 0.57 0.43IR (3) | 6.86 5.43 3.66 3.19 2.44 2.11 1.97 1.58el32 AMD no | 1.87 1.96 1.09 1.09 0.68 0.73 0.50 0.51IR (2) | 4.17 4.47 2.66 2.54 1.66 1.68 1.19 1.22ND no | 1.49 1.55 0.95 0.95 0.64 0.64 0.47 0.43IR (2) | 3.37 3.67 2.47 2.25 1.63 1.51 1.13 1.08inv-extrusion-1 ND no 1.50 0.73 0.67 0.43 0.39 0.29 0.27 0.22 0.19IR (3) 6.19 2.77 2.44 1.65 1.51 1.16 1.00 0.85 0.75mixing-tank ND no 1.54 0.64 0.57 0.35 0.31 0.21 0.22 0.17 0.15IR (3) 6.46 2.56 2.12 1.42 1.25 0.92 0.85 0.69 0.64twotone MC64+AMD no | 2.63 2.95 1.93 1.84 1.28 1.24 0.93 0.85IR (3) | 9.00 9.84 6.95 6.68 4.97 4.50 3.43 3.18wang4 AMD no 1.04 0.63 0.66 0.42 0.43 0.28 0.27 0.22 0.19IR (2) 2.34 1.43 1.48 0.99 1.00 0.69 0.64 0.52 0.46Table 7: Solve time (in seonds) on the Cray T3E. \+IR" shows the time spent improvingthe initial solution using iterative re�nement. \|" indiates not enough memory. Thebest time is indiated in bold fae.addressed in the future. The ost of iterative re�nement an signi�antly inrease the ostof obtaining a solution. The use of MC64 to preproess the matrix an redue the number ofsteps of iterative re�nement, Although both the solve times and iterative re�nement timesderease very slowly with an inreasing number of proessors, they still keep dereasingup to 512 proessors.4.3 Memory usageIn Table 8, we report the amount of memory atually used during the LU fatorizationphase. This inludes both reals and integers for the matries, the working arrays, and theommuniation bu�ers. We notie a signi�ant redution in the required memory perproessor when inreasing the number of proessors, showing good memory salability.We also observe that there is little di�erene between the average and maximum memoryusage, showing that the algorithm is well balaned.Note that memory salability an be ritial on globally addressable platforms whereparallelism inreases the total memory used. On purely distributed mahines suh as theT3E, the main fator remains the memory used per proessor whih should allow largeproblems to be solved when enough proessors are available.4.4 SalabilityAs stated in Introdution, our goal is to make sparse LU fatorization as salable assparse Cholesky. In this setion we present the eÆieny of our fatorization algorithm on24

Matrix Ordering Number of proessors2x2 4x4 8x8Avg. Max. Avg. Max. Avg. Max.bbmat AMD 113 114 50 51 33 34ND 124 128 60 61 43 44el32 AMD 113 115 42 44 24 25ND 79 81 33 34 21 22inv-extrusion-1 ND 47 48 22 22 15 16mixing-tank ND 55 56 23 23 14 15twotone MC64+AMD 66 80 35 41 24 24wang4 AMD 33 34 14 14 8 9Table 8: Memory used during fatorization (in Megabytes, per proessor).model problems, both analytially and experimentaly, and show that the algorithm andthe implementation indeed meet our goal.Consider the 3D ubi grid problem using the standard nested dissetion ordering,the �ll in the fatored matrix is O(N4=3) and the number of oating-point operationsto fatorize the matrix is O(N2) [29℄. Let the P proessors be arranged as a squareproess grid. In our parallel algorithm (Figure 12), eah nonzero element is sent to atmost pP proessors. The total ommuniation overhead is O(N4=3pP). Thus, when thetotal amount of work N2 inreases proportionally with the overhead N4=3pP , the paralleleÆieny an be maintained. So our algorithm has an iso-eÆieny funtion N2 = �P 3=2(work-proessor relation), for some onstant . Re-writing this, we have N4=3 = � P(memory-proessor relation). That is, the parallel eÆieny an be maintained onstantif the �ll per proessor is onstant. This iso-eÆieny funtion is the same as the denseLU algorithm in SaLAPACK [13℄, and the sparse Cholesky algorithm in PSPACES [36℄.We now report the measured performane for the 11-point disretization of theLaplaian operator on three-dimensional (NX, NY, NZ) grid problems. Both 3D ubi(NX=NY=NZ) and retangular (NX, NX/4, NX/8) grids are used. When inreasing thenumber of proessors, we tried to maintain a onstant number of operations per proessorwhile keeping as muh as possible the same shape of grids. The size of the grids used,the number of operations, the timings, the Megaop rates, and the parallel eÆieny arereported in Table 9.If the algorithm were perfetly salable, the parallel runtime would be onstant.Beause of various overheads, this is not usually true. But from the timing results wesee that the time inrease is not very muh even up to 128 proessors. The resultson parallel eÆieny show that the algorithm is more salable for ubi grids than forretangular grids, sine the ubi grids represent the best possible regular and balanedproblems. Here, the eÆieny on p proessors is omputed as the ratio of the Megaop rateper proessor on p proessors over its Megaop rate on 1 proessor. For ubi grids, thealgorithm maintains greater than 95% eÆieny up to 16 proessors, and greater than 75%eÆieny even up to 128 proessors. But for retangular grids, the respetive eÆieny�gures are 80% and 50%. 25

Cubi grids Retangular gridsProessors Grid size ops time Mops E�. Grid size ops time Mops E�.(109) (%) NX NY NZ (109) (%)1 29 7.2 56.3 127.2 100 96 24 12 4.5 33.3 133.4 1002 33 15.9 61.8 257.1 101 110 28 13 9.6 37.6 250.9 944 36 26.8 52.0 514.9 101 120 30 15 17.9 36.3 491.5 928 41 60.0 60.2 996.5 98 136 34 17 36.6 36.3 923.0 8616 46 117.9 59.8 1971.5 97 152 38 19 72.7 42.2 1719.6 8132 51 224.9 64.7 3476.7 85 168 42 21 135.3 43.8 3084.6 7264 57 444.7 67.3 6612.6 81 184 46 23 236.0 46.6 5059.3 59128 64 886.4 71.1 12462.9 77 208 52 26 485.6 56.1 8652.2 51Table 9: Fatorization time (in seonds), the Megaop rate, and parallel eÆieny (E�.)on Cray T3E. bbmat el32 inv-extrusion-1 mixing-tank twotone wang4Load balane measureBfat .78 .83 .87 .92 .47 .84Bsol .86 .89 .93 .94 .52 .78Fration of the time spent in ommuniation and synhronizationfat .64 .67 .64 .55 .76 .78sol .85 .83 .86 .85 .84 .84Table 10: Load balane and ommuniation overhead on 64 proessors Cray T3E.4.5 Load balane and ommuniation/synhronization overheadThe eÆieny of a parallel algorithm depends mainly on how the workload is distributedand how muh time is spent in ommuniation. One way to measure load balane is asfollows. Let fi denote the number of oating-point operations performed on proess i.We ompute the load balane fator B = Pi(fi)P maxi(fi) . In other words, B is the averageworkload divided by the maximum workload. It is lear that 0 < B � 1, and higher Bindiates better load balane. The parallel runtime is at least the runtime of the slowestproess, whose workload is highest. In Table 10 we present the load balane fator B forboth fatorization and solve phases. As an be seen from the table, the distribution ofworkload is good for most matries, exept for twotone.In the same table, we also show the fration of the runtime spent in ommuniationor synhronization, i.e., the parallel overhead. This inludes the time for MPI alls andthe idle time waiting for a message to be sent or to arrive. The amount of overheadis quite exessive; on 64 proessors, more than 50% of the total fatorization time isin overhead. For triangular solve, whih has relatively smaller amount of omputation,ommuniation and synhronization take more than 85% of the total time. We expetthe perentage of overhead will be even higher with more proessors, beause the totalamount of omputation is more or less onstant.Although twotone is a relatively large matrix, its fatorization does not sale as well asfor the other large matries. One reason is that the present submatrix to proess mappingresults in very poor load distribution. Another reason is due to poor task sheduling that26

results in large overhead. When we look further into the overhead, we �nd that mostoverhead omes from the idle proessors either waiting to reeive a olumn blok of L sentfrom a proess olumn on the left (step (1) in Figure 12), or waiting to reeive a row blokof U sent from a proess row from above (step (2) in Figure 12). Clearly, the ritial pathof the algorithm is in step (1), whih must preserve ertain preedene relation betweenloop iteration steps. Our pipelining method shortens the ritial path to some extent, butwe expet the length of the ritial path an be further redued by a more sophistiatedDAG (task graph) sheduling. For the solve, we �nd that most overhead omes from theidle proessors waiting to reeive a message (line 10 in Figure 13). So on eah proessthere is not muh work to do but a large amount of idle time. These synhronizationoverheads also our in the other matries, but the problems are not so pronouned astwotone.Another problem with twotone is that supernode size (or blok size) is very small, only2 olumns on average. This results in poor uniproessor performane and low Megaoprate.4.6 Large appliationsIn this setion, we desribe two appliation areas in whih SuperLU DIST has played aritial role. The �rst appliation is in the solution of a long-standing problem of satteringin a quantum system of three harged partiles. This requires solving the omplex,nonsymmetri, and very ill-onditioned linear systems. The largest system solved is oforder 8 million. SuperLU DIST is used in building the blok diagonal preonditioners forthe CGS iterative solver. The number of CGS iterations ranges between 12 to 35. Sineeah CGS iteration requires two preonditioning steps, 24 to 70 solutions of the diagonalbloks are required. For a blok of size 1 million, SuperLU DIST takes 1209 seonds tofatorize using 64 proessors of the IBM SP at NERSC (this is done only one), and ittakes 26 seonds to perform triangular solutions (this needs to be done repeatedly in eahpreonditioning step). The total exeution time is about 1 hour. See [11℄ for more details.The sienti� breakthrough result was reported in a over artile of Siene [52℄.More reently, we have been ollaborating with researhers at the Stanford LinearAelerator Center to develop alternative eigensolvers for Omega3P, a widely usedeletromagnetis ode in aelerator design. In this appliation the interior eigenvalues andeigenvetors of a large sparse generalized eigenvalue problem are needed. We integratedSuperLU DIST with PARPACK [44℄, a parallel Lanzos ode, to onstrut a shift-and-inverteigensolver. For a system of order 1.3 million, PARPACK needs about 4.5 solves for eaheigenpair. For eah solve, SuperLU DIST takes 39 seonds using 32 proessors of the IBMSP at NERSC. The fatorization is done one, and takes 553 seonds. The total time for�nding 10 interior eigenpairs is 42 minutes.5 Related workDu� and Koster [22℄ studied the bene�ts of using MC64 to permute large entries onto thediagonal in both diret and iterative solvers, and in preonditioning. For the multifrontaldiret solver, they showed that using the large-diagonal permutation, the number ofdelayed pivots were vastly redued in fatorization. In the iterative methods suh as27

GMRES, BiCGSTAB and QMR using ILU preonditioners, they showed that onvergenerate is substantially improved in many ases when the large-diagonal permutation isemployed. Benzi, Haws and T�uma onduted more extensive experiments on the e�etof MC64 on preonditioning strategies [12℄. Chen [14℄ also onsidered using MC64 to avoidpivoting as muh as possible in the ILU methods.Amestoy et al. developed a distributed-memory multifrontal solver, alled MUMPS [3℄.It is based on the symmetri pattern of AT +A, and performs partial threshold pivoting.It uses partial stati mapping based on the elimination tree of AT + A (1D for thefrontal matries and 2D for the root). The distributed sheduling algorithm for LUfatorization is dynami and asynhronous. We performed a omprehensive omparisonbetween SuperLU DIST and MUMPS [7℄. The general observations are: SuperLU DISTmay needone more step of iterative re�nement than MUMPS to ahieve the same level of auray;SuperLU DIST preserves the sparsity and the asymmetry of the fators better, and usuallyrequires less memory; MUMPS is faster on smaller number of proessors (e.g., less than 64),but SuperLU DIST is faster on larger number of proessors and shows better salability.A few other distributed-memory unsymmetri sparse diret solvers have beendeveloped. Comparing SuperLU DIST with those solvers remains future work. SPOOLESis a supernodal, left-up-looking solver [9℄. The �ll reduing ordering is a hybrid approahalled multisetion [10℄, whih is applied to the struture of AT +A. It performs thresholdrook pivoting with both row and olumn interhanges. The task dependeny graph is theelimination tree of AT + A. S+ is a supernodal, right-looking solver [26℄. The algorithmis based on the following stati information. The sparsity pattern of the Householder QRfatorization of A ontains the union of all sparsity patterns of L and U for all possible rowinterhanges [28, 30℄. This has been used to do both memory alloation and omputationonservatively (on possibly zero entries), but the strutural upper bound an be arbitrarilyloose, partiularly for matries arising from iruit and devie simulations.6 Conluding remarks and future workIn this paper, we presented the details of the algorithms used in SuperLU DIST solver.We demonstrated numerial stability of the GESP algorithm, and showed that a salableimplementation is feasible for this algorithm beause of the stati data struture andsheduling optimizations. Another added bene�t of GESP is that it opens new possibilitiesto study better �ll reduing ordering algorithms for unsymmetri LU fatorization. Ourgoal is to have sparse LU fatorization as salable as sparse Cholesky. This is inherently aharder problem than sparse Cholesky, beause two di�erent fators L and U are involved.Our future work remains in several areas.� Parallel preordering and symboli analysis.Steps (1) and (3) of the GESP algorithm (see Figure 1) are still sequential. Althoughthey usually do not take muh time, we need to parallelize this step in order toimprove memory salability, if not timewise. The parallel algorithm may be di�erentfrom the sequential algorithm used in MC64, beause MC64 is inherently serial.� Improve parallel eÆieny of fatorization and triangular solvesAlthough the solver exhibits good salability now, the parallel overhead is still large28

for large numbers of proessors (see Setion 4.5). Several improvements ould bemade. For better load balane, we an use more general funtions than 2D blokyli to map submatries to proessors. To redue the synhronization overhead,we an relax some task sheduling onstraints imposed by the urrent pipeliningalgorithm. For example, the bloks in a blok olumn an be fatorized by theolumn proesses independently if sparsity permits doing so. A more sophistiatedsheduling algorithm an be implemented to exploit the parallelism from theelimination DAGs, whih ould simultaneously shedule independent tasks frommultiple steps of the fatorization (see Figure 12). We expet these improvementswill have a large impat for very sparse and/or very unsymmetri matries, suh astwotone, and for the orderings that give wide and bushy elimination DAGs, suhas nested dissetion.To speed up the triangular solve, we may apply some graph oloring heuristi toredue the number of parallel steps [42℄. There are also alternative algorithmsother than substitutions, suh as those based on partitioned inversion [1℄ orseletive inversion [51℄. However, these algorithms usually require preproessing ordi�erent matrix distributions than the one used in our fatorization. Whether thepreproessing and redistribution will o�set the bene�t o�ered by these algorithmswill probably depend on the number of right-hand sides.� Improve numerial robustness.More tehniques an be used; these inlude performing iterative re�nement withextra preise residuals [45℄ and using dynami preision during the fatorization, seeAppendix A.AknowledgmentsWe would like to thank Patrik Amestoy, Iain Du�, Jean-Yves L'Exellent and Rih Vudufor very helpful disussions on the subjet, whih greatly improves the presentation of themanusript. We thank Patrik Amestoy for providing us the 3D grid generation ode forsalability study. We thank the anonymous referees for their onstrutive omments inhelping us revise the paper.Referenes[1℄ Fernando L. Alvarado, Alex Pothen, and Robert Shreiber. Highly parallel sparse triangular solution.In Alan George, John R. Gilbert, and Joseph W.H. Liu, editors, Graph theory and sparse matrixomputation, pages 159{190. Springer-Verlag, New York, 1993.[2℄ P. R. Amestoy, T. A. Davis, and Iain S. Du�. An approximate minimum degree ordering algorithm.SIAM J. Matrix Analysis and Appliations, 17(4):886{905, 1996. Also University of Florida TR-94-039.[3℄ P. R. Amestoy, I. S. Du�, J.-Y. L'Exellent, and J. Koster. A fully asynhronous multifrontal solverusing distributed dynami sheduling. SIAM Journal on Matrix Analysis and Appliations, 23(1):15{41, 2001.[4℄ P. R. Amestoy, X. S. Li, and E. G. Ng. Diagonal markowitz sheme with loal symmetrization.Tehnial report, Lawrene Berkeley National Laboratory, in preparation.29

[5℄ P. R. Amestoy and C. Puglisi. An unsymmetrized multifrontal LU fatorization. Teh. Rep.RT/APO/00/3, ENSEEIHT-IRIT, 2000. Also Lawrene Berkeley National Laboratory report LBNL-46474.[6℄ Patrik R. Amestoy and Iain S. Du�. Memory management issues in sparse multifrontal methods onmultiproessors. The International Journal of Superomputer Appliations, 7(1):64{82, Spring 1993.[7℄ Patrik R. Amestoy, Iain S. Du�, Jean-Yves L'Exellent, and Xiaoye S. Li. Analysis and omparisonof two general sparse solvers for distributed memory omputers. ACM Transations on MathematialSoftware, 27(4):388{421, Deember 2001.[8℄ M. Arioli, J. W. Demmel, and I. S. Du�. Solving sparse linear systems with sparse bakward error.SIAM J. Matrix Anal. Appl., 10(2):165{190, April 1989.[9℄ C. Ashraft and R. G. Grimes. SPOOLES: An objet oriented sparse matrix library. In Proeedingsof the Ninth SIAM Conferene on Parallel Proessing for Sienti� Computing, San Antonio, Texas,Marh 22{24, 1999. http://www.netlib.org/linalg/spooles.[10℄ C. Ashraft and J. Liu. Robust ordering of sparse matries using multisetion. SIAM J. MatrixAnalysis and Appliations, 19:816{832, 1998.[11℄ M. Baertshy and X. S. Li. Solution of a three-body poblem in quantum mehanis. In Proeedingsof SC2001: High Performane Networking and Computing Conferene, Denver, Colorado, November10{16 2001.[12℄ M. Benzi, J. C. Haws, and M. Tuma. Preonditioning highly inde�nite and nonsymmetri matries.SIAM J. Sienti� Computing, 22:1333{1353, 2000.[13℄ L. S. Blakford, J. Choi, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. SaLAPACK Users' Guide. SIAM, Philadelphia,1997. 325 pages.[14℄ Tzu-Yi Chen. Preonditioning sparse matries for omputing eigenvalues and omputing linear systemsof equations. PhD thesis, Computer Siene Division, UC Berkeley, Deember 2001.[15℄ T. A. Davis and I. S. Du�. A ombined unifrontal/multifrontal method for unsymmetri sparsematries. ACM Trans. Mathematial Software, 25(1):1{19, 1999.[16℄ Timothy A. Davis. University of Florida sparse matrix olletion.http://www.ise.u.edu/�davis/sparse.[17℄ Timothy A. Davis, John R. Gilbert, Stefan I. Larimore, and Esmond Ng. A olumn approximateminimum degree ordering algorithm. Tehnial Report TR-00-005, Computer and InformationSienes Department, University of Florida, 2000. submitted to ACM Trans. Math. Software.[18℄ James W. Demmel. Applied Numerial Linear Algebra. SIAM, Philadelphia, 1997.[19℄ James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H. Liu. Asupernodal approah to sparse partial pivoting. SIAM J. Matrix Analysis and Appliations, 20(3):720{755, 1999.[20℄ James W. Demmel, John R. Gilbert, and Xiaoye S. Li. An asynhronous parallel supernodal algorithmfor sparse gaussian elimination. SIAM J. Matrix Analysis and Appliations, 20(4):915{952, 1999.[21℄ Iain S. Du� and Jako Koster. The design and use of algorithms for permuting large entries to thediagonal of sparse matries. Tehnial Report RAL-TR-97-059, Rutherford Appleton Laboratory,1997.[22℄ Iain S. Du� and Jako Koster. The design and use of algorithms for permuting large entries to thediagonal of sparse matries. SIAM J. Matrix Analysis and Appliations, 20(4):889{901, 1999.[23℄ I.S. Du�, I.M. Erisman, and J.K. Reid. Diret Methods for Sparse Matries. Oxford University Press,London, 1986.[24℄ I.S. Du�, R.G. Grimes, and J.G. Lewis. Users' guide for the Harwell-Boeing sparse matrix olletion(release 1). Tehnial Report RAL-92-086, Rutherford Appleton Laboratory, Deember 1992.[25℄ George E. Forsythe and Cleve B. Moler. Computer Solution of Linear Algebrai Systems. Prentis-Hall, Englewood Cli�s, NJ, USA, 1967. 30

[26℄ C. Fu, X. Jiao, and T. Yang. EÆient sparse LU fatorization with partial pivoting on distributedmemory arhitetures. IEEE Trans. Parallel and Distributed Systems, 9(2):109{125, 1998.[27℄ A. George. Nested dissetion of a regular �nite element mesh. SIAM J. Numerial Analysis, 10:345{363, 1973.[28℄ Alan George, Joseph Liu, and Esmond Ng. A data struture for sparse QR and LU fatorizations.SIAM J. Si. Stat. Comput., 9:100{121, 1988.[29℄ Alan George and Joseph W. H. Liu. Computer Solution of Large Sparse Positive De�nite Systems.Prentie Hall, Englewood Cli�s, NJ, 1981.[30℄ Alan George and Esmond Ng. Symboli fatorization for sparse Gaussian elimination with partialpivoting. SIAM J. Si. Stat. Comput., 8(6):877{898, 1987.[31℄ John R. Gilbert. Prediting strutures in sparse matrix omputations. SIAM J. Matrix Analysis andAppliations, 15(1):62{79, January 1994.[32℄ John R. Gilbert and Joseph W.H. Liu. Elimination strutures for unsymmetri sparse LU fators.SIAM J. Matrix Anal. Appl., 14(2):334{352, April 1993.[33℄ G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, MD,Third edition, 1996.[34℄ A. Gupta. WSMP: Watson Sparse Matrix Pakage. Tehnial report, IBM researh division, T.J.Watson Researh Center, Yorktown Heights, 2000. http://www.s.umn.edu/�agupta/wsmp.html.[35℄ A. Gupta. Improved symboli and numerial fatorization algorithms for unsymmetri sparse matries.Tehnial Report RC 22137 (99131), IBM Researh, 2001.[36℄ A. Gupta, G. Karypis, and V. Kumar. Highly salable parallel algorithms for sparse matrixfatorization. IEEE Trans. Parallel and Distributed Systems, 8:502{520, 1997.[37℄ A. Gupta and V. Kumar. Optimally salable parallel sparse holesky fatorization. In The 7th SIAMConferene on Parallel Proessing for Sienti� Computing, pages 442{447, 1995.[38℄ M. T. Heath and P. Raghavan. Performane of a fully parallel sparse solver. Int. Journal ofSuperomputer Appliations, 11(1):49{64, 1997.[39℄ B. Hendrikson and R. Leland. The CHACO User's Guide. Version 1.0. Tehnial Report SAND93-2339 � UC-405, Sandia National Laboratories, Albuquerque, 1993.[40℄ P. Henon, P. Ramet, and J. Roman. A mapping and sheduling algorithm for parallel sparse fan-innumerial fatorization. In EuroPar'99 Parallel Proessing, Leture Notes in Computer Siene, No.1685, pages 1059{1067, Berlin, Heidelberg, New York, 1999. Springer-Verlag.[41℄ HSL. A olletion of Fortran odes for large sale sienti� omputation, 2000.http://www.se.lr.a.uk/Ativity/HSL.[42℄ Mark T. Jones and Paul E. Plassmann. Salable iterative solution of sparse linear systems. ParallelComputing, (20):753{773, 1994.[43℄ G. Karypis and V. Kumar. MeTiS { A Software Pakage for Partitioning Unstrutured Graphs,Partitioning Meshes, and Computing Fill-Reduing Orderings of Sparse Matries { Version 4.0.University of Minnesota, September 1998.[44℄ Rih Lehouq, Kristi Mashho�, Denny Sorensen, and Chao Yang. Parallel ARPACK.http://www.aam.rie.edu/�kristyn/parpak home.html.[45℄ X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y. Kang,A. Kapur, M. C. Martin, B. J. Thompson, T. Tung, and D. J. Yoo. Design, Implementation andTesting of Extended and Mixed Preision BLAS. ACM Trans. Mathematial Software, 2002. toappear. Also Tehnial Report LBNL-45991, Lawrene Berkeley National Laboratory.[46℄ Xiaoye S. Li and James W. Demmel. Making sparse Gaussian elimination salable by stati pivoting.In Proeedings of SC98: High Performane Networking and Computing Conferene, Orlando, Florida,November 7{13 1998.[47℄ Joseph W.H. Liu. Modi�ation of the minimum degree algorithm by multiple elimination. ACMTrans. Math. Software, 11:141{153, 1985. 31

[48℄ Joseph W.H. Liu. The role of elimination trees in sparse fatorization. SIAM J. Matrix Anal. Appl.,11(1):134{172, January 1990.[49℄ H. M. Markowitz. The elimination form of the inverse and its appliation to linear programming.Management Si., 3:255{269, 1957.[50℄ M. Olshowka and A. Neumaier. A new pivoting strategy for Gaussian elimination. Linear Algebraand its Appliations, 240:131{151, 1996.[51℄ Padma Raghavan. EÆient parallel sparse triangular solution with seletive inversion. TehnialReport CS-95-314, Department of Computer Siene, University of Tennessee, 1995.[52℄ T. N. Resigno, M. Baertshy, W. A. Isaas, and C. W. MCurdy. Collisional breakup in a quantumsystem of three harged partiles. Siene, 286:2474{2479, Deember 24, 1999.[53℄ Jason Riedy. Parallel bipartite mathing for sparse matrix omputation. In preparation.[54℄ Edward Rothberg. Performane of panel and blok approahes to sparse Cholesky fatorization on theiPSC/860 and Paragon multiomputers. SIAM J. Sienti� Computing, 17(3):699{713, May 1996.[55℄ Y. Saad and M. H. Shultz. GMRES: a generalized minimal residual algorithm for solvingnonsymmetri linear systems. SIAM J. Si. Statist. Comput., 7:856{869, 1986.[56℄ Yousef Saad. SPARSKIT: a basi tool-kit for sparse matrix omputations (Version 2).http://www.s.umn.edu/Researh/arpa/SPARSKIT/sparskit.html.[57℄ O. Shenk, K. G�artner, and W. Fihtner. EÆient sparse LU fatorization with left{right lookingstrategy on shared memory multiproessors. BIT, 40(1):158{176, 2000.[58℄ Message Passing Interfae (MPI) forum. http://www.mpi-forum.org/.

32

A Exploiting higher preision to enhane stabilityUsing higher than working preision is another tehnique to enhane the stability of GESP.Neither of the following two methods were neessary to ahieve stability in the test aseswe used, but we mention them anyway for ompleteness, to show that \dynami preision"may entirely replae dynami pivoting as a way to guarantee stability, and in ase theymay be neessary in the future.The �rst and simplest high preision tehnique is the use of iterative re�nement [25, 18℄where the residual is omputed to high preision, shown in Figure 14.Figure 14: High Preision Iterative Re�nementCompute an initial approximation x0 of x = A�1b/* using fatorization of A from GESP */i = 0repeati = i+ 1/* ompute residual r to high preision, but store in working preision */r = A � x0 � bSolve A � dx = r /* using fatorization of A from GESP */xi = xi�1 � dxuntil dx is small enoughDepending on the stopping riterion used to measure whether d is small enough(typially one asks that xi and xi�1 do not di�er muh) and assuming that the fatorizationof GESP is not too unstable for the above iteration to onverge, it an be shown thatthis algorithm will onverge to a quite aurate approximate solution x̂: kx̂ � A�1bk =O(n")kA�1bk, i.e. independent of the ondition number. This is the advantage of highpreision omputation of r. We urrently use iterative re�nement to help stabilize GESP,but sine r is only omputed to working preision, we an only hope to ahieve goodbakward stability, not a tiny forward error bound on kx̂ � A�1bk. (A future version ofour algorithm will inlude high preision omputation of r.)But iterative re�nement with or without high preision residuals may not help ifthe initial fatorization A � LU is too unstable for the iteration to onverge, i.e.kA � LUk � "kAk. (This was not the ase for any of our test ases, although we douse GMRES as the default iterative algorithm to inrease reliability.) Our seond highpreision tehnique shows that stability an be gauranteed by using dynami preisioninstead of dynami pivoting. This method would be ompliated to implement fully(though heaply approximated), but shows that pivoting an in priniple be avoidedentirely.We explain the algorithm assuming a left-looking fatorization. This means that theentries of L and U are omputed as dot produts, without storing intermediate resultsto memory. This simpli�es the algorithm, beause this limits the need for high preisionto the registers aumulating the dot produts, and avoids storing many high preisionentries of intermediate Shur omplements to memory.33

We desribe the well-known error analysis of Gaussian elimination below, butdistinguish the preision "dot;ij used in dot produts to ompute Uij or Lij from thepreision "ij used to store Lij or Uij . Thus we permit eah dot produt and eah Lij andUij to possibly be omputed and stored to a di�erent preision. (In pratie one wouldhave just two preisions, working and double working.) We use the well-known fat thatthe dot produt Pki=1 xi � yi omputed in preision "dot yields the omputed result (hereand later we ignore over/underow and O("2) terms)kXi=1 xi � yi(1 + Æi)where eah jÆij � k"dot.Now onsider the formula Uij = Aij � (i�1Xk=1Lik � Ukj)for i � j. The algorithm will (1) evaluate the dot produt to preision "dot;ij (thus it mayvary from one dot produt to another in the algorithm), and then (2) subtrat the resultfrom Aij and store the answer in Uij to preision "ij . This yieldsUij = [Aij � i�1Xk=1Lik �Ukj(1 + Ædot;ijk)℄(1 + Æij)where jÆij j � 2"ij (this omes from subtrating and the �nal rounding of Uij to store inmemory), and jÆdot;ijkj � n"dot;ij . Rearranging, we getAij = Uij(1 + Æij) + i�1Xk=1Lik � Ukj(1 + Ædot;ijk)� Uij(1� Æij) + i�1Xk=1Lik �Ukj(1 + Ædot;ijk) (1)Similarly, the formula Lij = (Aij � j�1Xk=1Lik � Ukj)=Ujjfor i > j is implemented by (1) omputing the dot produt with preision "dot;ij , and then(2) doing the subtration, division and storing of Lij to preision "ij . This yieldsAij � UjjLij(1� Æij) + j�1Xk=1Lik � Ukj(1 + Ædot;ijk) (2)where jÆij j � 3"ij and jÆdot;ijkj � n"dot;ij .To put these formulas all together, we need some notation. We let E be the matrixwith Eij = "ij , Edot be the matrix with Edot;ij = "dot;ij , diag(U) be the diagonal part of thematrix U , and o�(U) be the o�-diagonal part of the matrix U . We also use the Hadamard34

(omponentwise) produt of two matries: C = A � B means Cij = Aij � Bij . Then wemay write equations (1) and (2) as A = L �U +E wherejEj � nEdot � (jo�(L)j � jo�(U)j) + 3E � j(o�(L) � diag(U)) + U)j (3)Note that o�(L) � diag(U) is stritly lower triangular and U is upper triangular, so theirsum requires no atual additions, just opying. In summary, the nEdot�(jo�(L)j � jo�(U)j)term aounts for all the error from inner produts, and the 3E � j(o�(L) � diag(U)) +U)jterm aounts for errors from subtration from Aij , division and storing the �nal entriesof L and U in memory.Now we will show how to use this formula to hoose "dot;ij and "ij dynamially toguarantee stability, where we mean guaranteeing that jEijj is no larger than some givenpositive upper bound �Eij . One obvious possibility is �Eij = "kAk, but sine it is no harderwe do the general ase where eah �Eij may di�er. We will also insist that all "dot;ij and"ij are no larger than the working preision " in whih the entries of A are stored.First, if a pivot Uii is enountered that is less than �Eii in magnitude, it should be setto �Eii=3 (to avoid division by zero and minimize growth of the entries of L and U).Seond, onsider the omputation of Uij . We begin by evaluating the dotprodut = Pi�1k=1 jLik � Ukj j (any reasonable upper bound on will do, suh asnmax1�k<i jLikjmax1�k<i jUkj j), and then hoosing "dot;ij � min(�Eij=(3); "). Nextompute d = Pi�1k=1 Lik � Ukj and u = Aij � d in preision "dot;ij . Then we hoose"ij � min(�Eij=(9u); ") and use it to omplete the omputation and storage of Uij = Aij�d.These hoies of Eij = "ij and Edot;ij = "dot;ij , along with possibly setting Uii to �Eii=3 asdesribed in the last paragraph, guarantee that the i; j entry of the right hand side of (3)is no more than �Eij for i � j as desired.Third, onsider the omputation of Lij . As before we begin by omputing thedot produt = Pj�1k=1 jLik � Ukj j or a reasonable upper bound and hoosing "dot;ij �min(�Eij=(2); "). Next we ompute d =Pj�1k=1 Lik �Ukj and l = Aij � d in preision "dot;ij .Then we hoose "ij � min(�Eij=(6l); ") and use it to omplete the omputation and storageof Lij = (Aij � d)=Ujj . These hoies of Eij = "ij and Edot;ij = "dot;ij guarantee that thei; j entry of the right hand side of (3) is no more than �Eij for i > j as desired.Finally we get to the solution of Ax = b by the solution of Ly = b for y and Ux = y forx. The simplest thing is to do all the omputations (inluding storing intermediate valuesof x and y) in the preision "tri � minij("ij ; "dot;ij). Then the usual error analysis says theomputed solutions ŷ of Ly = b and x̂ of Ux = y satisfy (L+ÆL)ŷ = b with jÆLj � n"trijLjand (U + ÆU)x̂ = ŷ with jÆU j � n"trijU j. Combining everything yields (A+ F)x̂ = b withjF j = j �E + ÆL � U + L � ÆU + ÆL � ÆU j� j �E + ÆL � U + L � ÆU j� jEj+ jÆLj � jU j+ jLj � jÆU j� jEj+ 2n"trijLj � jU jwhere our hoie of "tri guarantees that the 2n"trijLj � jU j term is dominated by at mostabout n times the jEj term from bound (3). Altogether, this shows that the omputedsolution x̂ is stable (even after rounding bak to working preision) as desired.35

We have obviously paid a prie to avoid pivoting, namely extra work to ompute thebounds b. But we ould learly approximate this algorithm, if it ever beomes neessary,to maintain stability while avoiding pivoting.Here is an example. Consider the matrixA = 0BBB� 10�8 1 1 11 4 3 21 2 4 31 2 3 4 1CCCAwhih has a ondition number of under 30. Its L and U fators without pivoting areapproximately (we have omitted important trailing digits)L = 0BBB� 10�8108 1108 1 1108 1 2=3 1 1CCCA and U = 0BBB� 10�8 1 1 1�108 �108 �1083 32 1CCCANote that the �rst olumn of L and seond row of U are very large, but the latter rowsand olumns are not. Assuming that working preision is " = 10�8 and that we want toahieve stability with �Eij = 10�8, then our algorithm would pik the following values ofE and Edot (rounded to the nearest power of 10):Edot = 0BBB� 10�8 10�8 10�8 10�810�8 10�16 10�16 10�1610�8 10�16 10�16 10�1610�8 10�16 10�16 10�16 1CCCA and E = 0BBB� 10�8 10�8 10�8 10�810�8 10�16 10�16 10�1610�8 10�16 10�8 10�810�8 10�16 10�8 10�8 1CCCAIn other words, the initial tiny pivot means that all dot produts need to be done todouble preision, but only the seond row of U and seond olumn of L need to be storedto double preision; the rest an be working preision.
36

