
Massively Parallel X-ray Scattering Simulations
Abhinav Sarje∗, Xiaoye S. Li∗, Slim Chourou∗, Elaine R. Chan† and Alexander Hexemer†

∗Computational Research Division †Advanced Light Source
Lawrence Berkeley National Laboratory, Berkeley, CA

Email: {asarje, xsli, stchourou, erchan, ahexemer}@lbl.gov

Abstract—Although present X-ray scattering techniques can
provide tremendous information on the nano-structural proper-
ties of materials that are valuable in the design and fabrication
of energy-relevant nano-devices, a primary challenge remains
in the analyses of such data. In this paper we describe a
high-performance, flexible, and scalable Grazing Incidence Small
Angle X-ray Scattering simulation algorithm and codes that we
have developed on multi-core/CPU and many-core/GPU clusters.
We discuss in detail our implementation, optimization and
performance on these platforms. Our results show speedups
of ∼125x on a Fermi-GPU and ∼20x on a Cray-XE6 24-core
node, compared to a sequential CPU code, with near linear
scaling on multi-node clusters. To our knowledge, this is the first
GISAXS simulation code that is flexible to compute scattered light
intensities in all spatial directions allowing full reconstruction of
GISAXS patterns for any complex structures and with high-
resolutions while reducing simulation times from months to
minutes.

I. INTRODUCTION

X-ray scattering methods are a valuable tool for measuring
the structural properties of materials used in the design and
fabrication of energy-relevant nano-devices, such as photo-
voltaic, energy storage, battery, fuel, and carbon capture and
sequestration devices. They permit characterization of material
structures on length scales ranging from the sub-nanometer
to microns and down to the millisecond time scale. For
example, small angle X-ray scattering (SAXS) and grazing in-
cidence SAXS (GISAXS) methods enable characterization of
nanoscopic and near-surface structural features, respectively,
that arise from the self-assembly of block copolymers into
ordered microphases or the self-assembly of nanoparticles.
In this paper we address the computational challenges in
GISAXS data analysis. We obtain data from one such X-ray
science facility – the Advanced Light Source (ALS) located
at the Lawrence Berkeley National Laboratory (LBNL). This
is a third-generation synchrotron light source and one of the
world’s brightest sources of ultraviolet and soft X-ray beams.
It is a U.S. national user facility funded by the Department of
Energy, and is internationally recognized for its world-class
measurement capabilities in X-ray science.

Fig. 1 illustrates the GISAXS scattering geometry. An
incident X-ray wave vector ki is directed at a small grazing
angle with respect to the sample surface to enhance the near-
surface scattering. The scattered beam, of wave vector kf ,
makes the out-of-plane scattering angle αf with respect to
the sample surface and the in-plane angle 2θf with respect to
the transmitted beam. For GISAXS a 2D detector is used to

record the intensity of the scattered wave vector. The measured
intensity is a function of the angular coordinates αi, αf and
2θf . The incident angle αi can be varied and the sample can be
rotated by an angle ω around its surface normal, thus creating
many 2D images with various intensity profiles. Analysis
algorithms are used to analyze these images and predict the
atomic structure of the underlying sample being probed.

Although the scattering techniques described above can
provide tremendous information on the structural properties of
materials comprising nanoscale devices for energy technolo-
gies, a primary challenge remains in the analyses of the re-
sulting data. An understanding of the fundamental physics that
underlie the scattering methods is necessary to create accurate
models and simulation algorithms for extracting information
on material structures from the measured scattering patterns.
Currently, the bottleneck in data analysis is the computational
time required to complete the analysis, which is commonly of
the order of several weeks to several months. The analysis time
is compounded by the fast measurement rates of current state-
of-the-art high-speed detectors. For example, users at the Linac
Coherent Light Source (LCLS) facility in Stanford can collect
24 terabytes of data in two weeks using a detector that outputs
100 megabytes of data per second. Quantitatively analyzing
such massive sets of data in an intelligent and coherent manner
is a daunting task at present and the accumulation of large
amounts of data poses a severe impediment in designing a
sequential set of studies. Consequently, researchers are faced
with an extremely inefficient utilization of the light sources and
recently developed detection systems. This mismatch must be
removed before we can envision or effectively use any newly
developed scattering beamline hardware.

In this work, we are developing new high-performance
computing algorithms, codes, and software tools, targeting
state-of-the-art HPC systems, for the analysis of X-ray scat-
tering data collected at such beamline facilities. The targeted
parallel platforms are large-scale parallel multi- and many-core
systems with possibly hybrid node architectures, including
GPU accelerators. In this paper, we present our recent parallel
implementation and results for one of the most important
class of the analysis algorithms used in the X-ray scattering
community: the Distorted Wave Born Approximation (DWBA)
model for GISAXS data simulations. Our new parallel package
is called HipGISAXS (High Performance GISAXS), and will
be released to the public in a couple of months. The most time-
consuming task in the GISAXS simulations is the form factor
calculation, and efficient implementation and optimization of

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/$31.00 c©2012 IEEE

Fig. 1. Grazing incidence small angle X-ray scattering (GISAXS) geometry.
Graphic taken with permission from A. Meyer’s www.gisaxs.de

this kernel on above-mentioned targeted system architectures
is the focal treatment of this paper.

II. RELATED WORK

Presently the following three software packages are avail-
able for modeling GISAXS of coarse structures: IsGISAXS [1],
FitGISAXS [2], and DANSE [3]. While these software suites
incorporate the essential theoretical treatments of GI-scattering
in the DWBA accurately for simple systems, they are severely
limited for analyses and modeling of complex samples be-
cause of their rigorous input requirements for initial structural
information. Hence, current GISAXS analysis is restricted
to treatment of only a specific set of model shapes. Other
factors, such as the platform dependencies of the packages and
limitations on the levels of analysis available, have contributed
to the lack of widespread use of these tools. For example,
IsGISAXS presently runs only on the Microsoft Windows
operating systems. Consequently, researchers have tended to
abandon further investments in understanding the utilization of
the software tools for their generic data analysis and modeling
needs. Instead, they have resorted to writing their own analysis
and simulation codes on case-by-case bases. These efforts
require a considerable investment of time and resources, all
the while increasing work duplications.

In addition to the above, an open source Python library
entitled PyNX [4] has been recently released to help with a
more precise computation of GISAXS patterns for disordered
or distorted atomic structures. This library utilizes graphics
processors (GPUs) to accelerate the computations of scattering
events from structures with large numbers of atoms (> 103)
in up to three dimensions, but a single simulation can run on
a single GPU only, limiting the complexity and size of the
inputs. PyNX has an advantage of allowing a user to upload
custom atomic geometry as inputs for the simulations, but on
the other hand, it can only treat structures which sit on top of
the surface of a substrate and not those which are embedded
within various media layers or buried within a substrate.

Our HipGISAXS codes provide a significant improvement
over the other tools in several ways. HipGISAXS can compute
the diffraction image for any given superposition of custom
shapes or morphologies (for example, those obtained graphi-
cally via a discretization scheme), and for all possible grazing

incidence angles and in-plane sample rotations. This flexibility
permits the treatment of a wide range of possible custom
structural geometries such as nanostructures. Furthermore, to
our knowledge, HipGISAXS is the only GISAXS analysis and
modeling code which can take advantage of state-of-the-art
massively parallel hybrid many-core/GPU/CPU clusters and
traditional multi-core/CPU clusters with tens of thousands
nodes and hundreds of thousands cores, and is thus capable
of reducing simulation times from months to minutes.

III. THE DWBA METHOD

GISAXS is a unique method for investigating material
topology and the structure of collections of nano-objects
deposited on top of substrates or confined inside multilayered
films. Simultaneous scanning of the in-plane and out-of-plane
directions of the sample produce images that exhibit detailed
features of the underlying nanostructures, hence allowing a
wealth of information compared to alternative methods. To
date the only theoretical framework modeling the GISAXS
process is the Distorted Wave Born Approximation (DWBA)
method based on the perturbative solution of the electromag-
netic wave propagation equation inside a stratified medium [5].

One of the main objectives of GISAXS is to elucidate
the features of highly complex nanostructures. This requires
solving for form factor in a high-resolution k-space grid,
typically resulting in matrices with tens to hundreds of mil-
lion grid-points. This time-consuming and memory-demanding
calculation constitutes a major bottleneck in the GISAXS
simulations. The existing codes described in Section II can
only treat simple collections of shapes for which the form
factors can be analytically computed.

We begin with a brief introduction to the theory behind the
form factor in DWBA. A detailed description can be found
in [5]. The scattering intensity of the X-rays obtained at a
point ~q in the k-space is represented as

I(~q) =
k40

16π2
|∆n2|2|Φ(~q||, k

0
zi, k

0
zf)|2. (1)

∆n2 is the refractive index difference between the particle and
the substrate; for a nanoparticle over a substrate surface,

Φ(~q||, k
0
zi, k

0
zf) = F (~q||, k

0
zf − k0zi)

+ rf0,1F (~q||,−k0zf − k0zi)
+ ri0,1F (~q||, k

0
zf + k0zi)

+ ri0,1r
f
0,1F (~q||,−k0zf + k0zi), (2)

where F is the form factor, and the four terms represent
the four different cases of refelction-refraction combinations.
Form factor at a q-point ~q is given by a surface integral as

F (~q) =

∫
S(~r)

ei~q·~rd~r. (3)

The integral is over the shape surface of the nanoparticles in
the sample under consideration. Computationally, the shape
surface is discretized through triangulation, and the form
factor is approximated as a summation over all the generated

Fig. 2. Simulated form factors for a cylinder (R = H = 5nm), and a sphere
(R = 5nm, H = 10nm.) Graphics taken with permission from A. Meyer’s
www.gisaxs.de

triangles. If st represents the surface area of a triangle t, then
the total form factor can be written as

F (~q) =

N∑
t=1

ei~q·~rst (4)

where N is the total number of triangles. The higher the
number of triangles (higher resolution), the better is the
obtained approximation. In Fig. 2, two sample form factor
intensity images are shown for simple shapes – a cylinder and
a sphere. Because of the simplicity of these structures, the
images have been analytically computed.

A. Form Factor Kernel on HPC Systems

With the increasing rate of GISAXS data generation, as
mentioned in Section I, there is an urgent need to be able
to analyze the data sets in real-time because storing all the
data is expensive and the amount of time required to carry
out the analyses gets impractical. Furthermore, in future, the
hardware will be incapable of transferring all the raw data
collected at the detector due to the high data-generation rate.
With this in mind, we have developed efficient and flexible
GISAXS simulation codes based on the DWBA theory on
high-performance systems as a step towards achieving the goal
of real-time data analysis. In particular, we have developed
codes on a hybrid cluster of GPUs with multi-core CPUs,
and a cluster of purely multi-core CPUs. In the following
sections, our implementation and analysis on these platforms
will be discussed in detail. To our knowledge, this is the first
GISAXS simulation code that is flexible enough to treat any
custom complex morphologies, with high resolutions, all the
while reducing the simulation times from months to minutes.

Recall that the main bottleneck kernel in the GISAXS
simulation algorithm is the calculation of form factors, which
involves integration over the nanoparticle shape, approximated
as a summation over the discretized/triangulated shape surface
(Equation 4). The number of triangles also corresponds to
the complexity and resolution of the nanostructures under
consideration. Given a user-defined region in the k-space as a
Q-grid where the grid divisions may be irregular, the form
factor needs to be computed for each point on this grid.
Computationally our focal problem can be defined as follows:

Given a user-defined 3-dimensional Q-grid of resolution
nx×ny×nz grid-points, and a set of N triangles representing

the shape surface of a triangulated nanostructure, we want
to compute F (~q) for each q-point ~q in the Q-grid, thereby
constructing M , a 3-D matrix of dimensions nx × ny × nz .

In a typical simulation, nx is on the order of a few hundreds,
ny and nz on several hundred to thousands, and N may range
from a few hundred to millions. Note that the computation of
F (~q) for each q-point is independent of other q-points, making
this application an ideal candidate for effective parallelization.

Apart from being compute-intensive, this problem is
memory-demanding as well. First, the size of the matrix M
is generally large as mentioned above, with the number of
q-points ranging from a million to hundreds of millions and
the number of triangles ranging from few hundred to millions.
This requires O(nxnynz) memory to store the output. In addi-
tion, the computations generate an intermediate 4-dimensional
matrix MI , as will be described momentarily, where for each
q-point (qx, qy, qz) the fourth dimension corresponds to the set
of input triangles {t0, · · · , tN−1}, thereby increasing memory
usage by a factor of N . Also note that the computations
are performed on complex numbers, doubling the memory
requirements as opposed to real number computations.

To facilitate effective parallelization of this problem, we
decompose the form factor computation into its primary com-
ponents. Since the sum-reduction is over these components,
we separate reduction from the main computational kernel.
Specifically, we divide the computation of a form factor into
two phases as follows. For a q-point ~q,

1) compute inner term Ft(~q) = ei~q·~rst (Eq. 4) for each
triangle t, generating an intermediate array of size N ,

2) sum-reduce the intermediate array over all the triangles,
resulting in the final form factor, F (~q) =

∑
t Ft(~q).

Phase 1 generates an N sized vector for each q-point,
resulting in a 4-D matrix MI of size nx×ny×nz×N . Phase
2 performs sum-reduction over fourth dimension (triangles),
generating the final form factor matrix M . We will now
describe our parallelization strategies for these computations.

IV. PARALLELIZATION ON GPU CLUSTERS

In order to be parallelized, the computations need to be
decomposed into subproblems. This is easy in our case due to
the fact that there are no dependencies between the q-points
for form factor computations. With a hierarchy of parallelism
available in the system, our computations also need to be
accordingly decomposed. As such, we begin in a top-down
fashion where the first level of decomposition is across a
cluster of GPUs. Computation on the Q-grid is distributed
among all the computing nodes as follows.

A. Across a GPU cluster

In a typical scenario nx is small – about one hundred or less.
Hence the Q-grid resolution is mostly determined by ny and
nz which, on the other hand, are typically large. We use this
knowledge to decompose the Q-grid along the two dimensions
y and z, keeping x intact. Suppose we have p GPU nodes
available. We divide the to be computed matrix M , into a two-
dimensional grid of equally-sized sub-matrices. We take the

Fig. 3. Decomposition of Q-grid and M into tiles. A tile Mi,j is assigned
to the processor Pi,j for computations. In this illustration, p = 4.

size of this grid as
⌊√

p
⌋
× p

b√pc along the y and z dimensions
respectively, and also arrange the compute nodes along the
same way. Hence, when p = q2, the grid is q × q sized. Let
us call a resulting division of the Q-grid a Q-tile, and the
corresponding sub-matrix of M simply a tile. Let the size of
a Q-tile be nx × np y × np z where

np y =
ny⌊√
p
⌋ , and np z =

nz
p

b√pc
.

Each of the nodes Pi,j is assigned to compute a distinct tile
Mk,l through a mapping

Pi,j
map−−−→Mk,l, 0 ≤ i ≤ b

√
pc − 1, 0 ≤ j ≤ p⌊√

p
⌋ − 1. (5)

In a simple mapping we set k = i and l = j. This scheme
is illustrated in Fig. 3. At initialization, Pi,j reads segments
of the q-vectors, which define the Q-grid, corresponding to
its assigned Q-tile. The problem is hence decomposed into
independent sub-problems for each node in the cluster to com-
pute. Each node Pi,j proceeds to compute its tile Mi,j . Once
completed, an assigned master node may gather computed tiles
from other processors to form the final form factor matrix M .
When M is large, a single node gathering all outputs from
other processors may become a bottleneck. To address this,
each processor may directly write its output at its position in
the common storage/disk through parallel I/O. Next we discuss
how to perform the computations on each single GPU.

B. On a Single GPU Node

Once a GPU is assigned a tile to compute, further de-
compositions are needed for parallelization on a GPU. In
phase 1 of the computations, we utilize the fact that each
computation of Ft(~q) is independent of others along each
dimension. Again, since the x dimension is generally small, we
perform decomposition along the t, y and z dimensions. We
chose this 3-D decomposition due to its superior performance
compared to other possibilities, such as 1-D decomposition
along the t dimension. Also, 1-D and 2-D decompositions
are more limiting in the amount of available parallelism
in the computations compared to a 3-D decomposition. For
simplicity, without the loss of generality, we set the y and z
dimension sizes of the tile under consideration as np y = ny
and np z = nz .

We follow the CUDA programming paradigm, and define a
CUDA thread block in phase 1 as a 3-D array of threads,
of size bt × by × bz . The number of thread blocks hence

generated would be
⌈
N
bt

⌉
×
⌈
ny
by

⌉
×
⌈
nz
bz

⌉
. Each thread in a

thread block is mapped to a set of unique elements in MI

to be computed: thread Ti,j,k is responsible for the element
tuples {qxl , qyj , qzk , ti}, 0 ≤ l < nx. This mapping can be
defined as

Ti,j,k
map−−−→ (qx, qyj , qzk , ti), (6)

where, 0 ≤ i < bt, 0 ≤ j < by, 0 ≤ k < bz . Hence,
Ti,j,k computes the inner values Fti(qx, qyj , qzk) for all qx.
An illustration is shown in Fig. 4.

In phase 2, we follow a similar technique for the sum-
reduction, but now we can no longer exploit decomposition
along the triangles since this is to be reduced. The computation
of M is, thus, decomposed into a grid of 3-D blocks. A block
is sized b′x× b′y × b′z , and each block corresponds to a CUDA
thread block. A thread Ti,j,k is mapped to a unique q-point.
A simple mapping in this case can be

Ti,j,k
map−−−→ ~qi,j,k = (qxi , qyj , qzk). (7)

Note that in this phase we have included the x dimension
in the decomposition. This is to have more flexibility during
the computations, and increase the parallelism when possible.
In the phase 1, decomposing along x did not have any
performance gain, hence for simplicity we did not decompose
it. An example of the decomposition and mapping scheme is
shown in Fig. 4. Hence, thread Ti,j,k is responsible to compute
the final form factor value F (~qi,j,k) by summing up Ftl(~qi,j,k)
over triangles tl, 0 ≤ l < N . At the end of this phase, we
obtain the final matrix M . One will note that the sizes of
these matrices, MI and M , tend to grow rapidly as resolution
or number of triangles is increased. A single GPU has limited
device memory, and in many typical cases, will not be able to
hold these matrices. We tackle this issue next.

C. Handling Memory Limitations

Large memory requirements necessitate a careful use of the
available memory, which is also an essential key to obtaining
high-performance. Once more we take the advantage of high
data parallelism in the form factor computations.

We decompose the intermediate 4-D matrix MI along each
of the four dimensions into a number of equally sized (except
in boundary cases) disjoint 4-D hyperblocks, uniquely covering
all the q-points and triangles. Let us denote a hyperblock by
Mh, and let its size be hx × hy × hz × ht, (0 < hα ≤ nα,
α ∈ {x, y, z, t}). For a given hyperblock, its maximal-set
comprises of all hyperblocks which cover the same q-points
(but different sets of triangles). Each such maximal set in MI

can be uniquely mapped to a block Mb, a 3-D sub-matrix of
M , of size hx × hy × hz , where the coordinates of the q-
points in this block are equal to those in the corresponding
hyperblocks. This is illustrated in Fig. 4. The total number
of such hyperblocks constructed in MI is, hence, equal
to
⌈
nx
hx

⌉ ⌈
ny
hy

⌉ ⌈
nz
hz

⌉ ⌈
N
ht

⌉
, and the number of corresponding

blocks in M is
⌈
nx
hx

⌉ ⌈
ny
hy

⌉ ⌈
nz
hz

⌉
.

The main idea here is to decompose the computations such
that each resulting hyperblock can be completely handled in

thread block

M

Ti,j,kq0...n-1,j,k map

ny

nznx

triangles

Fig. 4. (Left) Phase 1 – Decomposition of computations during the first phase is done along the triangles and y, z directions. A triangle is a coordinate
in the fourth dimension for all q-points in the Q-grid. (Middle) Phase 2 – Decomposition of M into blocks, and mapping of CUDA threads to the q-points.
Each thread is responsible for the reduction over all the triangles at its mapped q-point. (Right) Decomposition of MI into hyperblocks. The maximal sets
of such hyperblocks corresponding to the same set of q-points, but different triangles, are mapped to a unique block in the matrix M .

the available memory at once. Once we decompose the matrix
MI into hyperblocks, the memory requirement to process one
hyperblock is chxhyhz(ht + 1) bytes, where c is a constant
representing the number of bytes used to encode a single value.
Thus, the size of a hyperblock can be set to fit within the
available memory.

We use these hyperblocks as our subproblems to be com-
puted in the limited memory. Hence, we set the size of the
input in phase one described earlier by substituting nx with
hx, ny with hy , nz with hz , and N with ht. Note that
we can easily decompose the computations along the fourth
dimension t because summation operation is both associative
and commutative. Therefore, the reduction phase needs to be
divided into two steps as follows:

F (~q) =

N−1∑
t=0

Ft(~q) =

d Nht e−1∑
u=0

(
ht−1∑
t=0

Ft(~q)

)
. (8)

Phase 1 computation of a hyperblock Mh is immediately
followed by phase 2 reduction on this hyperblock. Here the
reduction is a partial reduction into a 3-D matrix, Mp. A
number of iterations would be needed (this number is equal
to the total number of hyperblocks) to perform the complete
computations. Each iteration consists of computing a hyper-
block and generating partially reduced matrix. The number
of such partially reduced hyperblocks Mp in a maximal set
mapping to one Mb is equal to

⌈
N
ht

⌉
. As such, each Mp

for the same maximal set is summed after each iteration to
maintain the same memory requirement, and construct the
final output submatrix Mb in matrix M . These operations are
carried on by the host CPU simultaneously with computation
of next hyperblock on the GPU. We can view this phase of
computations as first reducing the size of the fourth dimension
from N to

⌈
N
ht

⌉
, and then to 1 in order to obtain a 3-

dimensional matrix Mb.

D. Algorithm Overview

As a summary of the above descriptions to compute M
on a GPU cluster, we present an overview algorithm below
summarizing all the computational steps. We also show the

use of double buffering in order to overlap computation with
memory transfers through streams on the GPU.

1: input Q-grid: Q = {qα0, · · · , qα(nα−1)}, α ∈ {x, y, z}
2: input Shape triangles: T = {t0, · · · , tN−1}
3: output Matrix Mnx×ny×nz : Mi,j,k = F (~qi,j,k)
4: procedure FORMFACTOR(Q, T) . host code
5: Calculate local input Q-grid, and M .
6: Copy local Q and T to device.
7: Calculate hyperblock size hx × hy × hz × ht.
8: Number of hyperblocks =

⌈
nx
hx

⌉ ⌈
ny
hy

⌉ ⌈
nz
hz

⌉ ⌈
N
ht

⌉
.

9: Calculate CUDA block size by × bz × bt.
10: active ← 0.
11: for each hyperblock Mh do
12: passive ← 1− active.
13: if not first iteration then
14: Synchronize stream passive.
15: Start copy Bdevice[passive] to Bhost[passive].
16: end if
17: Launch kernel Phase 1 on stream active.
18: Thread Ti,j,k executes:
19: Start . device code
20: for each x do
21: Mh(qx,j,k, ti) = Fqti(qx,j,k)← ei~q·~rsti .
22: Store into Bdevice[active].
23: end for
24: End
25: Calculate CUDA block size bx × by × bz .
26: Synchronize stream active.
27: Launch kernel Phase 2 on stream active.
28: Thread Ti,j,k executes:
29: Start . device code
30: Mp(qi,j,k)←

∑
tl
Mh(qi,j,k, tl).

31: End
32: Add Bhost[passive] to correct location in M .
33: Synchronize stream active.
34: active ← 1− active.
35: end for
36: Return matrix M .
37: end procedure

V. OPTIMIZING THE GPU CODE

The performance of the aforementioned procedure is very
sensitive to the various decomposition parameters, requiring
the search of optimal values for each parameter. Furthermore,
developing an efficient and high-performance implementation
on the GPUs requires a number of techniques and tricks to
optimize both the computations as well as memory accesses
and traffic. In this section we will discuss a few examples from
such an aspect of our implementation and also our experiences,
with a thought that they may provide the reader some insights
into GPU code development.

A. Choosing a Hyperblock Size

Till now we assumed that we are already given the hy-
perblock size. To start, we will now remove this assumption.
One would expect to have the hyperblock size such that it fills
the device memory as much as possible, since intuitively this
would mean less number of hyperblocks, and hence iterations
number of iterations in the algorithm. Also, since the input
Q-grid and triangle data is accessed multiple times during
the computations, having large hyperblock size such that the
needed data can fit into the fast memories, would also improve
performance. Furthermore, the two phases of the computations
derive parallelism from the number of q-points and triangles.
Too small a hyperblock size would reduce the amount of
parallelism available, with smaller number of thread blocks,
thereby under-utilizing the multiprocessors.

While on the other hand, after each iteration in the al-
gorithm, the generated partially reduced block Mp is trans-
ferred from the device memory to the host memory. Since
the data transfer bandwidth between host memory and the
device memory is quite low (∼8 GB/s), even with overlapped
asynchronous data transfers and computations, this step may
pose as a bottleneck if the block size is too large, thereby
lowering the performance. Also, with a large hyperblock size,
the limited caches and shared memory would not be able
to hold all the needed data which are frequently accessed.
This would increase number of accesses to the slower device
memory, reducing performance.

As it turns out, the choice of the hyperblock size plays
a crucial role in the performance of the code, affecting the
runtimes by almost an order of magnitude. This size should
be a good balance between the two extremes. In order to
demonstrate this, as well as to choose an optimal hyperblock
size, we conducted extensive experiments by varying the four
parameters hx, hy , hz and ht, which define the hyperblock
size. In the following we show some examples from the results
as heat maps. They show snapshots of the execution times
with different hyperblock sizes. We use two datasets for these
experiments: dataset A with 2,292 triangles, and dataset B
with 91,753 triangles, and we use a Q-grid of resolution of
3.6M q-points as 91× 200× 200. Since, nx is typically small
compared to ny and nz , hence we assign hx = nx = 91 in
these examples. In Fig. 5, we show a heat-map for dataset
A (left) and dataset B (right). All the execution times shown
are in seconds. We note that we get optimal performances

 10 20 30 40 50 60 70 80 90 100
y-dimension

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

z-
di

m
en

si
on

 15

 20

 25

 30

 35

 40

 45

 10 20 30 40 50 60
y-dimension

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

z-
di

m
en

si
on

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

Fig. 5. Execution time heat maps for varying hyperblock sizes on the dataset
with N = 2, 292 (left) and N = 91, 753 (right). On the x-axis is hy , and
on y-axis is hz . Here, hx = 91 and ht = 2000. The darker/bluer regions
are where the best performances are achieved.

towards the lower sizes of hy and hz , but keeping them too
low again increases the runtimes, as can be seen on the lower
left corners of the maps. Based on extensive such experiments
(also with variable hx and ht), we selected the hyperblock
size parameters hx = nx, hy = 20, hz = 15, and ht = 2, 000
for our further experiments and performance analyses.

B. Choosing CUDA Thread-block Sizes

With the hyperblock size chosen, we now need to choose
the CUDA thread block sizes (and hence, the CUDA thread
grid size.) Note that hyperblocks are processed one at a time.
As such, the hyperblock size also defines the amount of
parallelism available during one iteration. Also, since we have
two GPU kernel functions – one for each of the two phases, we
need to choose the thread block sizes for both, independently.
To avoid redundancy, here we will only discuss the thread
block sizes for the phase 1 kernel. Procedures and experiments
for phase 2 kernel are similar.

The granularity of scheduling in a GPU is a thread block.
It defines the number of threads, and hence, the amount of
resources required. Furthermore, the number of thread blocks
scheduled to a single multiprocessor also defines the resource
divisions (e.g. registers are divided among all the thread
blocks). As such, we are again faced with the optimal size
values being a good balance between the two extremes. On
one hand, more thread blocks per multiprocessor (meaning
smaller sizes, given a fixed input) will ensure latency hiding,
on the other, they will demand more resources (e.g. number
of registers per thread block will be lower, possibly leading
to register spilling). Similarly, larger thread blocks demand
less resources, share the data copied to the shared memory for
each thread block, thereby increasing data reuse from the fast
on-chip memory, while they may leave the multiprocessors
underutilized. Another factor affecting the choice of these
parameters is the warp size. Being SIMD processors, a thread
block size as a multiple of warp size will ensure less wastage
of resources.

To demonstrate this, we give some examples from our
extensive experiments. Again we use similar idea as for the
hyperblock size choice. We vary the three parameters bx, by ,
and bz in their possible value ranges (the search space) and

 0 2 4 6 8 10 12 14 16 18 20

y-dimension size

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20
z-

di
m

en
si

on
 s

iz
e

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20

y-dimension size

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

z-
di

m
en

si
on

 s
iz

e

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

Fig. 6. Execution time heat maps for phase 1 with varying thread block pa-
rameter. by and bz are along the x- and y-axes, respectively. Brighter/yellower
regions show the best performances.

obtain the execution times for each. As is clear from the heat
maps in Fig. 6, the thread block size may improve/degrade the
performance by an order of magnitude.

Through our experiments we selected the thread block size
for phase 1 to be 2×4×4, and for the phase 2 to be 16×2×2.

It may happen that all these parameters (hyperblock dimen-
sions, thread block sizes for each kernel) are interdependent.
To handle such a case to perform a search for optimal
parameter values becomes quite hard due to the exponential
growth in the size of the search space with the addition of
each parameter. One of our next steps in future is to use
autotuning, which employs techniques such as branch-and-
bound, to address this as well as to choose optimal parameters
automatically given a GPU system and inputs.

C. Memory Optimizations

Memory traffic, access patterns and access frequency play
an important role in the performance of any application,
particularly on specialized processors like GPUs that have a
hierarchy of memory from large and slow to small and fast,
as well as memories configurable as per the need, and with
explicit memory transfers. Major components in the memory
hierarchy of a typical compute GPU, from small and fast to
large and slow, consists of registers, shared memories, L1
cache, L2 cache, device memory, and host memory.

The computation of a hyperblock in our case proceeds as
follows. First, for a thread block the required segments of
the Q-grid vectors qx, qy , qz , and the triangle definitions are
copied from the device memory to temporary buffers in the
shared memory by the threads of the thread block. This allows
faster access as well as data reuse since entries in each of the
transferred segments is accessed multiple times by different
threads in the block. The computed values are stored in another
buffer in the shared memory, and once the whole block is
computed, it is transferred to the device memory.

Data transfers from the global memory to the shared mem-
ory is performed as one or more transfers of size 128 bytes.
Hence, it is fruitful to encode the to be transferred memory
such that it fills 128 bytes segment size as much as possible to
reduce bandwidth wastage. As an example, for computation of
one thread block of size 2× 4× 4 in single precision requires
64 bytes for triangle definitions, 256 bytes for segment of
qx and 16 bytes each for segments of qy and qz . Properly
packing the data into 128 byte segments reduced the number

of 128 byte transfers by half from 6, when transferring each
data individually, to 3. Furthermore, this method also ensures
proper memory coalescing.

Data transfers between the device and host memory have
the highest latencies. As one of the basic methods to hide
such latencies, we employ double buffering to overlap the
transfer of computed and partially reduced output buffers with
computation of the next hyperblock. Pinning the host memory
buffers ensures efficient transfers between device and host.

Bank conflicts when accessing data in shared memory can
degrade the performance. To ensure no conflicts is hence
helpful. In our case, as one example, we have 32 threads in a
block. Since the number of banks in the shared memory is also
32, we were experiencing high conflicts because each thread
was accessing data with a stride of 32 (number of threads),
which landed multiple threads to the same bank accessing
different words. With a simple change of making the stride
to 33, amount of bank conflicts overhead dropped from 24%
to just 1.8%. The rest of the bank conflicts were due to access
of memory of size 64 bytes by each of the 32 threads. By
splitting the access into two steps by letting only even and
then odd numbered threads to access the memory, the number
of bank conflicts in this kernel went down to 0.

The above optimizations were described in terms of the
phase 1 kernel. We used similar techniques to optimize the
phase 2 kernel (we will skip the details due to redundancy).

VI. PARALLELIZATION ON MULTI-CORE CPU CLUSTERS

Although GPU clusters prove to be energy efficient, and
cheaper than CPU cluster counterparts, general-purpose pro-
cessor clusters are more common and accessible to larger
fraction of the community. Hence, we further extend our codes
to work effectively on clusters of multi-core CPUs. Since in
the previous sections, a GPU works in conjunction with a
CPU, we built upon the same basic framework and replacing
the off-loading of computations to GPUs with multi-threaded
kernels utilizing all the cores available.

A. Across a Multi-core Cluster

Implementing this code on multi-cores is a lot simpler than
on GPUs. Following the same idea, we first decompose the
computations in M into a number of equally sized tiles along
y and z dimensions. The details are the same as covered in
Section IV-A. Hence, process Pi,j is assigned the tile Mi,j .

B. On a Single Node/Process

To compute a tile, we again follow similar decomposition
procedure as we did for a single GPU. A tile is therefore
divided into multiple hyperplocks. This is to ensure constant
memory usage during the computations. In a hyperblock, we
perform the phase 1 and phase 2 computations. These are
performed across the multiple cores available. The phase 1
kernel consists of four nested loops, one each covering the
four dimensions. To obtain good performance, we need to be
careful about how we order these loops. To preserve locality

 5 10 15 20 25 30 35 40 45 50

y-dimension

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

z-
di

m
en

si
on

 30

 31

 32

 33

 34

 35

 36

 37

Fig. 7. Execution time heat map for phase 1 on multi-core CPU with varying
hyperblock sizes and dataset with N = 2, 292. On the x-axis is hy , and on
y-axis is hz . Here, hx = 91 and ht = 2000. The darker/bluer regions are
where best performances are achieved.

and take advantage of the available caches, we keep the x-
dimension as the innermost, followed by y, z and t in that
order, because we use row-major way to store our matrices.

In a typical scenario, the outermost loop, over the triangles,
will have the highest loop bound among the four loops (the
number of triangles is generally greater than the resolutions
along each spatial direction). Based on this fact, and a number
of our experiments, we parallelize this outermost loop across
the available cores. Hence, each core is assigned a unique set
of triangles and is responsible for computing the inner term
of form factor for each of the assigned triangles and each q-
point. This will also result in effective use of caches because
each core will be accessing Q-grid data in the same order.

We again experiment with various possible hyperblock sizes
in order to make a selection of optimal size. An example heat
map for this case is given in Fig. 7, where the input consists
of 2,292 triangles and Q-grid of resolution 91 × 100 × 100.
Note that in this case, the variation in execution times is not
large, and smaller hyperblock sizes perform slightly better than
larger sizes. We attribute this to the large L1, L2 and L3 caches
where there are more hits with smaller hyperblock sizes, and
number of misses will increase as the hyperblock size grows
in relation to these cache sizes.

The reduction kernel for phase 2 is also developed in a
similar fashion, but with parallelization across the y (or z)
dimension. This is because we need to reduce the t dimension,
and the size of x dimension is generally small, which would
lower amount of parallelism.

Our code is specifically tuned for a Cray XE6 system,
consisting of AMD Magny Corus processors. In this system
one compute node consists of four sockets, each holding a
6-core processor. This is an example of a NUMA design.
To obtain optimal performance, we utilize each processor
for a separate parallel task, and hence, generate 6 threads.
This configuration performed the best compared to other
configurations: 2 parallel tasks with 12 threads each; and, 1
parallel task with 24 threads. We will skip further details on
our CPU implementation due to space limitations.

VII. ANALYTICAL ANALYSIS

In this section we will give brief analytical analyses for
our GPU and CPU codes. Computational complexity of this

problem under consideration is clearly the product of the sizes
along all four dimensions: O(nxnynznt). With a naive imple-
mentation, the memory requirement would also be of the order
of product of the four dimension sizes. Our algorithms make
sure that the memory usage remains within the constraints. In
fact, computations use a constant size of memory since the
requirement is equal to the size of a hyperblock, which once
chosen is kept constant, and the output needs to be stored as
a nx × ny × nz sized matrix.

To gain a deeper insight into the performance capability
of the computations under consideration, let us determine the
classification of our kernel through its theoretical arithmetic
intensity (the ratio flop/byte). On the GPU model, assuming
that all the required input is already present in the device
memory, there are three main types of read memory transfers:
device memory to the multiprocessor (registers), device to
shared memory of a multiprocessor, and shared memory to
the registers of a multiprocessor. In our case, the first type is
not used for any major transfer. Hence, there are two levels
of memory traffic during the form factor computations. First
let us compute the arithmetic intensity for the case when
we ignore the shared memory access latency. Hence, for the
optimized phase 1 kernel, the arithmetic intensity is computed
to be 2.91. Let us now consider the shared memory access.
Assuming that the required data for computation of a block
is already in the shared memory, the arithmetic intensity is
computed to be 0.97. Hence, during a block computation,
there is a good balance of computations and shared memory
accesses in the optimum scenario. Poorly optimized kernel,
such as one which may have a lot of bank conflicts, will result
in degraded performance because the balance will tip towards
memory bound. Similar is true for the other way round when
arithmetic operations are not optimized.

The theoretical attainable performance of a kernel, accord-
ing to the Roofline approach of performance modeling, is com-
puted as min{peak performance, peak bandwidth×arithmetic
intensity}. On a C2050 GPU, with peak performance of
1.03TFlops and peak bandwidth of 144GB/s, the attainable
performance for our phase 1 kernel is 419GFlops, bound by
the memory ceiling.

Similarly, for the CPU model, we get an arithmetic intensity
of 3.167. On our Cray XE6 Magny Corus platform, the theoret-
ical peak performance is 401.6GFlops, and peak bandwidth is
102.4GB/s. This dictates the maximum attainable performance
to be 324.3GFlops, bound by the memory ceiling.

VIII. PERFORMANCE RESULTS

The implementation of these codes has been done in C++,
along with — on GPU cluster: CUDA 4.2 [6] on the GPUs,
OpenMP [7] on the host CPU, and MPI [8] across the nodes;
on CPU cluster: MPI for inter-process communication, and
OpenMP, with 6 threads per MPI process (at most 4 MPI
processes per node). We use the parallel HDF5 [9] binary file
format to encode the data defining the input triangles. The
output is also stored in the same format, where each process
performs parallel I/O operations to write to the output file.

100

101

102

103

104

105

 1 2 4 8 16 32 64 128 256 512 930

Ex
ec

ut
io

n
Ti

m
e

[s
]

GPU Nodes

100

101

102

103

104

105

 0.5 1 2 4 8 16 64 256 1024 6000

Ex
ec

ut
io

n
Ti

m
e

[s
]

Multi-core Nodes (24 cores each)

3.6M Triangles x 91M q-points
3.6M Triangles x 23M q-points
92K Triangles x 91M q-points
92K Triangles x 23M q-points

100

101

102

103

 1 2 4 8 16 32 64 128 256 512 930

R
el

at
iv

e
Sp

ee
du

p

GPU Nodes

100

101

102

103

104

 0.5 1 2 4 8 16 64 256 1024 6000

R
el

at
iv

e
Sp

ee
du

p

Multi-core Nodes (24 cores each)

3.6M Triangles x 91M q-points
3.6M Triangles x 23M q-points
92K Triangles x 91M q-points
92K Triangles x 23M q-points

Fig. 8. Strong scaling results for runs on a GPU cluster (left) and CPU cluster (right). The top two graphs show the execution time in seconds taken for
four different input configurations. Bottom two graphs show the corresponding relative speedups, w.r.t. the smallest number of nodes which could execute the
input cases in reasonable amount of time. Data is shown for up to 930 GPU nodes, and 6,000 multi-core CPU nodes (144,000 cores). The x-axis value of
0.5 nodes in the case of the CPU cluster corresponds to utilizing half a node (12 cores), i.e. running two MPI tasks each with 6 threads.

Using the codes thus implemented, we carried out extensive
experiments to analyze their performance. In the following
we present some of these results. To start with, we will
first describe the configuration of the systems used in our
experiments.

We used the GPU cluster TitanDev, located at the Oak Ridge
Leadership Computing Facility. This developmental cluster
consists of NVIDIA Tesla x2050 (Fermi) GPU accelerators,
each with 6GB DDR5 device memory and CUDA cores
running at frequency of 1.15 GHz, attached to a single AMD
Opteron Interlagos 16-core CPU with 32GB of DDR3 main
memory. This cluster has Gemini interconnects installed. We
utilized up to 930 nodes of this cluster. Each GPU ran with a
48KB shared memory configuration.

Recently for a brief period, we also obtained access to 240
nodes of the Tianhe-1A GPU cluster, currently ranked 2nd in
the top500 list, located at the National Supercomputing Center
in Tianjin, China. This system is also built with NVIDIA
M2050 Fermi GPUs. We ran some of the scaling experiments
on this system and obtained similar scaling as on TitanDev –
hence we will omit these results from this paper.

We also used the CPU cluster Hopper, located at the
National Energy Research Scientific Computing Center in
Berkeley. At the time of writing this paper, this system ranked
8th in the top500 list. This is a Cray XE6 system with more
than 6,000 compute nodes (we utilized up to 6000 nodes).
Each node is a dual AMD Opteron MagnyCours 12-core CPU,
running at 2.1 GHz. Each node therefore has a total of 24
cores. Each core is equipped with 64KB L1 and 512KB L2

caches. 6 cores share a 6MB L3 cache. Each node has 32GB
DDR3 memory, and the nodes are connected with the Gemini
interconnects.

In the following experiments, we use two input data-sets: (1)
rectangular grating discretized into 91,753 triangles (∼92K),
and (2) OPV tomography data discretized into 3,598,351
triangles (∼3.6M). Further, we use two different Q-grid reso-
lutions: (1) 91 × 500 × 500 resulting in ∼23M q-points, and
91 × 1000 × 1000 resulting in 91M q-points. These inputs
form four different configurations, which we will refer to by
‘number of triangles×q-points’. Also keep in mind that all the
kernel computations are performed on complex numbers. We
use single precision in the following.

In Fig. 8 we show some of the strong scaling results for the
GPU and multi-core CPU clusters. We utilized the maximum
number of nodes usable on each of the two clusters – 930
GPUs on Titan and 6000 CPU nodes on Hopper. We see that
we achieve near perfect scaling in most cases and we believe
that our code can easily scale on even larger systems. In Fig. 9
we show scaling results on both clusters for varying input Q-
grid resolutions, while the number of nodes used and number
of input shape triangles is kept constant. And in Fig. 10 we
show scaling for varying the shape resolution (number of
input triangles) while keeping number of nodes and Q-grid
resolution constant. In both these scaling results, we again
obtain near perfect scaling as expected.

On comparing the execution times on a single node of
Hopper and a single node of Titan, it can be seen that a GPU
node is generally faster by a factor of about 6.5. While on

100

101

102

103

3.7M 14.6M 32.6M 58.4M91.0M

Ex
ec

ut
io

n
Ti

m
e

[s
]

q-points (grid resolution)

100

101

102

103

0.9M 3.7M 14.6M 32.6M 91.0M

Ex
ec

ut
io

n
Ti

m
e

[s
]

q-points (grid resolution)

6,600 Triangles, 4 Nodes
2,300 Triangles, 4 Nodes

Fig. 9. Scaling on GPU cluster (left) and multi-core CPU cluster (right) w.r.t. varying number of q-points in the Q-grid. The number of q-points represents
the grid resolution. Data is shown for resolutions 900,000 up to 91M, and were obtained on 4 nodes on each cluster for two different sized input shape
triangle sets.

10-2

10-1

100

101

102

103

 40 100 1000 10000 100000

Ex
ec

ut
io

n
Ti

m
e

[s
]

Triangles (shape resolution)

10-1

100

101

102

103

104

 40 100 1000 10000 100000

Ex
ec

ut
io

n
Ti

m
e

[s
]

Triangles (shape resolution)

22.8 M q-points, 4 Nodes
3.6 M q-points, 4 Nodes

Fig. 10. Scaling on GPU cluster (left) and multi-core CPU cluster (right) with varying number of input triangles. The number of triangles represents the
discretization resolution of the shape surface. Data is shown for number of triangles from 40 up to 92K, and were obtained on 4 nodes on each cluster for
two different Q-grid resolutions.

comparing all 6000 nodes of Hopper against all 930 nodes
of Titan, Hopper was faster by a factor of about only 1.3.
Although it is not quite fair to compare GPUs with CPUs
this way, it just puts the performance into perspective. Our
codes obtain 7.12 GFlops on single CPU node and 38.52
GFlops on a single GPU node. Using multiple nodes, 35.824
TFlops are obtained on 930 GPU nodes, and 36.01 TFlops
on 6000 CPU nodes. A better measurement of performance
would be throughput, in this case defined as the number
of points computed per second. On a single CPU node the
throughput obtained was 185.97M points/second, while on
single GPU node it was 1092.43M points/second. On 930
GPU nodes, maximum throughput obtained was 999.98Billion
points/second, and on 6,000 CPU nodes, the maximum was
941.07Billion points/second. Note that the CPU code used
above does not take advantage of vector processing. Our
codes are still undergoing revisions, and a number of further
improvements and optimizations are planned.

IX. CONCLUSIONS

We have designed and implemented parallel algorithms to
help the beam-line scientists and users at the Advanced Light
Source to achieve real-time analyses of the X-ray scattering
data. Our new DWBA code for simulating the GISAXS
patterns has achieved speedups of ∼125x speedup on one
Fermi-GPU card and ∼20x on a Cray XE6 24-core node,
compared to an optimized sequential CPU code. Further paral-

lelization using MPI led to nearly linear scaling on multi-node
clusters. The detailed performance analysis and optimization
were presented in the paper. In addition to tremendous runtime
reduction, our new codes utilize memory more efficiently,
which allows simulations with much larger samples and with
higher resolutions than what were previously possible using
the old sequential code.

In the future, we plan to use autotuning techniques such
as branch-and-bound to aid automatic selection of optimal
parameter values, such as hyperblock size and thread block
size. In addition to continued optimization of the algorithms
and codes, we are also collaborating with the other scientists
to integrate this back-end computing engine into an automatic
workflow management system, including a GUI input interface
and visualization tools. This will allow ALS to truly harness
the high-performance computing power.

ACKNOWLEDGMENTS

We thank Samuel Williams for his input on code analysis.
We used resources of the National Energy Research Scientific
Computing Center, which along with this work is supported by
the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. We also used resources
of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725.

REFERENCES

[1] R. Lazarri, “IsGISAXS: A Program for Grazing-Incidence Small Angle
X-Ray Scattering Analysis of Supported Islands,” Journal of Applied
Crystallography, vol. 35, pp. 406–421, 2002.

[2] D. Babonneau, “FitGISAXS: Software Package for Modelling and Anal-
ysis of GISAXS Data using IGOR Pro.” Journal of Applied Crystallog-
raphy, vol. 43, pp. 929–936, 2010.

[3] “Distributed Data Analysis for Neutron Scattering Experiments,” 2010,
http://danse.us.

[4] V. Favre-Nicolin, J. Coraux, M.-I. Richard, and H. Renevier, “Fast
Computation of Scattering Maps of Nanostructures Using Graphical
Processing Units,” Journal of Applied Crystallography, vol. 44, pp. 635–
640, 2011.

[5] G. Renaud, R. Lazzari, and F. Leroy, “Probing surface and interface
morphology with grazing incidence small angle x-ray scattering,” Surface
Science Reports, vol. 64, pp. 255–380, 2009.

[6] NVIDIA Corporation, “NVIDIA CUDA C Programming Guide, Version
5.0,” 2012.

[7] “OpenMP Application Programming Interface, Version 3.1,” Jul. 2011.
[Online]. Available: www.openmp.org

[8] Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard, ser. Version 2.2, Sep. 2009. [Online]. Available: www.mpi-
forum.org/docs/docs.html

[9] The HDF Group, “HDF5 User’s Guide, Version 1.8.8,” Nov. 2011.
[Online]. Available: www.hdfgroup.org/hdf5

