CAM
quadrature_mod Module Reference

Data Types

type  quadrature_t
 

Functions/Subroutines

type(quadrature_t) function, public gauss (npts)
 
real(kind=longdouble_kind) function, dimension(np1), private gauss_pts (np1)
 
real(kind=longdouble_kind) function, dimension(np1), private gauss_wts (np1, gpts)
 
subroutine, public test_gauss (npts)
 
type(quadrature_t) function, public gausslobatto (npts)
 
real(kind=longdouble_kind) function, dimension(np1), private gausslobatto_pts (np1)
 
real(kind=longdouble_kind) function, dimension(np1), private gausslobatto_wts (np1, glpts)
 
subroutine, public test_gausslobatto (npts)
 
subroutine, public jacobi (n, x, alpha, beta, jac, djac)
 
real(kind=longdouble_kind) function, dimension(npoints), private jacobi_polynomials (n, alpha, beta, npoints, x)
 
real(kind=longdouble_kind) function, dimension(npoints), private jacobi_derivatives (n, alpha, beta, npoints, x)
 
real(kind=longdouble_kind) function, dimension(n+1), public legendre (x, N)
 
real(kind=longdouble_kind) function, dimension(n), public quad_norm (gquad, N)
 
subroutine, private trapn (f, a, b, N, it, s)
 
real(kind=real_kind) function, public trapezoid (f, a, b, eps)
 
real(kind=real_kind) function, public simpsons (f, a, b, eps)
 
real(kind=real_kind) function, public gaussian_int (f, a, b, gs)
 

Function/Subroutine Documentation

◆ gauss()

type (quadrature_t) function, public quadrature_mod::gauss ( integer, intent(in)  npts)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gauss_pts()

real (kind=longdouble_kind) function, dimension(np1), private quadrature_mod::gauss_pts ( integer, intent(in)  np1)
private
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gauss_wts()

real (kind=longdouble_kind) function, dimension(np1), private quadrature_mod::gauss_wts ( integer, intent(in)  np1,
real (kind=longdouble_kind), dimension(np1), intent(in)  gpts 
)
private
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gaussian_int()

real(kind=real_kind) function, public quadrature_mod::gaussian_int (   f,
real(kind=real_kind), intent(in)  a,
real(kind=real_kind), intent(in)  b,
type(quadrature_t), intent(in)  gs 
)

◆ gausslobatto()

type (quadrature_t) function, public quadrature_mod::gausslobatto ( integer, intent(in)  npts)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gausslobatto_pts()

real (kind=longdouble_kind) function, dimension(np1), private quadrature_mod::gausslobatto_pts ( integer, intent(in)  np1)
private
Here is the call graph for this function:
Here is the caller graph for this function:

◆ gausslobatto_wts()

real (kind=longdouble_kind) function, dimension(np1), private quadrature_mod::gausslobatto_wts ( integer, intent(in)  np1,
real (kind=longdouble_kind), dimension(np1), intent(in)  glpts 
)
private
Here is the call graph for this function:
Here is the caller graph for this function:

◆ jacobi()

subroutine, public quadrature_mod::jacobi ( integer, intent(in)  n,
real (kind=longdouble_kind), intent(in)  x,
real (kind=longdouble_kind), intent(in)  alpha,
real (kind=longdouble_kind), intent(in)  beta,
real (kind=longdouble_kind), dimension(0:n)  jac,
real (kind=longdouble_kind), dimension(0:n)  djac 
)
Here is the caller graph for this function:

◆ jacobi_derivatives()

real (kind=longdouble_kind) function, dimension(npoints), private quadrature_mod::jacobi_derivatives ( integer, intent(in)  n,
real (kind=longdouble_kind), intent(in)  alpha,
real (kind=longdouble_kind), intent(in)  beta,
integer, intent(in)  npoints,
real (kind=longdouble_kind), dimension(npoints), intent(in)  x 
)
private
Here is the caller graph for this function:

◆ jacobi_polynomials()

real (kind=longdouble_kind) function, dimension(npoints), private quadrature_mod::jacobi_polynomials ( integer, intent(in)  n,
real (kind=longdouble_kind)  alpha,
real (kind=longdouble_kind)  beta,
integer, intent(in)  npoints,
real (kind=longdouble_kind), dimension(npoints)  x 
)
private
Here is the caller graph for this function:

◆ legendre()

real (kind=longdouble_kind) function, dimension(n+1), public quadrature_mod::legendre ( real (kind=longdouble_kind)  x,
integer  N 
)

◆ quad_norm()

real (kind=longdouble_kind) function, dimension(n), public quadrature_mod::quad_norm ( type (quadrature_t), intent(in)  gquad,
integer, intent(in)  N 
)
Here is the call graph for this function:

◆ simpsons()

real(kind=real_kind) function, public quadrature_mod::simpsons (   f,
real(kind=real_kind), intent(in)  a,
real(kind=real_kind), intent(in)  b,
real(kind=real_kind), intent(in)  eps 
)
Here is the call graph for this function:

◆ test_gauss()

subroutine, public quadrature_mod::test_gauss ( integer, intent(in)  npts)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ test_gausslobatto()

subroutine, public quadrature_mod::test_gausslobatto ( integer, intent(in)  npts)
Here is the call graph for this function:
Here is the caller graph for this function:

◆ trapezoid()

real(kind=real_kind) function, public quadrature_mod::trapezoid (   f,
real(kind=real_kind), intent(in)  a,
real(kind=real_kind), intent(in)  b,
real(kind=real_kind), intent(in)  eps 
)
Here is the call graph for this function:

◆ trapn()

subroutine, private quadrature_mod::trapn (   f,
real(kind=real_kind), intent(in)  a,
real(kind=real_kind), intent(in)  b,
integer, intent(in)  N,
integer, intent(inout)  it,
real(kind=real_kind), intent(inout)  s 
)
private
Here is the caller graph for this function: