Functions | |
template<class C, class T> | |
ROOT::Math::PositionVector3D< C > | operator+ (const ROOT::Math::PositionVector3D< C > &p1, const ROOT::Math::SVector< T, 3 > &v2) |
addition of 3D-vector and the linear algebra vector | |
template<class C, class B, class T> | |
ROOT::Math::PositionVector3D< C > | operator+ (const ROOT::Math::PositionVector3D< C > &p1, const ROOT::Math::VecExpr< B, T, 3 > &v2) |
template<class C, class T> | |
ROOT::Math::DisplacementVector3D< C > | operator+ (const ROOT::Math::DisplacementVector3D< C > &p1, const ROOT::Math::SVector< T, 3 > &v2) |
addition of 3D-vector and the linear algebra vector | |
template<class C, class B, class T> | |
ROOT::Math::DisplacementVector3D< C > | operator+ (const ROOT::Math::DisplacementVector3D< C > &p1, const ROOT::Math::VecExpr< B, T, 3 > &v2) |
template<class C, class T> | |
ROOT::Math::LorentzVector< C > | operator+ (const ROOT::Math::LorentzVector< C > &p1, const ROOT::Math::SVector< T, 4 > &v2) |
addition of Lorentz vector and the linear algebra vector | |
template<class C, class B, class T> | |
ROOT::Math::LorentzVector< C > | operator+ (const ROOT::Math::LorentzVector< C > &p1, const ROOT::Math::VecExpr< B, T, 4 > &v2) |
template<class C, class T> | |
ROOT::Math::SVector< T, 3 > | operator+ (const ROOT::Math::SVector< T, 3 > &v2, const ROOT::Math::PositionVector3D< C > &p1) |
addition of 3D-vector and the linear algebra vector | |
template<class C, class B, class T> | |
ROOT::Math::SVector< T, 3 > | operator+ (const ROOT::Math::VecExpr< B, T, 3 > &v2, const ROOT::Math::PositionVector3D< C > &p1) |
template<class C, class T> | |
ROOT::Math::SVector< T, 3 > | operator+ (const ROOT::Math::SVector< T, 3 > &v2, const ROOT::Math::DisplacementVector3D< C > &p1) |
addition of 3D-vector and the linear algebra vector | |
template<class C, class B, class T> | |
ROOT::Math::SVector< T, 3 > | operator+ (const ROOT::Math::VecExpr< B, T, 3 > &v2, const ROOT::Math::DisplacementVector3D< C > &p1) |
template<class C, class T> | |
ROOT::Math::SVector< T, 4 > | operator+ (const ROOT::Math::SVector< T, 4 > &v2, const ROOT::Math::LorentzVector< C > &p1) |
addition of Lorentz vector and the linear algebra vector | |
template<class C, class B, class T> | |
ROOT::Math::SVector< T, 4 > | operator+ (const ROOT::Math::VecExpr< B, T, 4 > &v2, const ROOT::Math::LorentzVector< C > &p1) |
template<class C, class T> | |
ROOT::Math::PositionVector3D< C > | operator- (const ROOT::Math::PositionVector3D< C > &p1, const ROOT::Math::SVector< T, 3 > &v2) |
subtraction of 3D-vector and the linear algebra vector | |
template<class C, class B, class T> | |
ROOT::Math::PositionVector3D< C > | operator- (const ROOT::Math::PositionVector3D< C > &p1, const ROOT::Math::VecExpr< B, T, 3 > &v2) |
template<class C, class T> | |
ROOT::Math::DisplacementVector3D< C > | operator- (const ROOT::Math::DisplacementVector3D< C > &p1, const ROOT::Math::SVector< T, 3 > &v2) |
subtraction of 3D-vector and the linear algebra vector | |
template<class C, class B, class T> | |
ROOT::Math::DisplacementVector3D< C > | operator- (const ROOT::Math::DisplacementVector3D< C > &p1, const ROOT::Math::VecExpr< B, T, 3 > &v2) |
template<class C, class T> | |
ROOT::Math::LorentzVector< C > | operator- (const ROOT::Math::LorentzVector< C > &p1, const ROOT::Math::SVector< T, 4 > &v2) |
subtraction of Lorentz vector and the linear algebra vector | |
template<class C, class B, class T> | |
ROOT::Math::LorentzVector< C > | operator- (const ROOT::Math::LorentzVector< C > &p1, const ROOT::Math::VecExpr< B, T, 4 > &v2) |
template<class C, class T> | |
ROOT::Math::SVector< T, 4 > | operator- (const ROOT::Math::SVector< T, 4 > &v1, const ROOT::Math::LorentzVector< C > &v2) |
subtract the Lorentz Vector from the Linear Algebra -vector | |
template<class C, class B, class T> | |
ROOT::Math::SVector< T, 4 > | operator- (const ROOT::Math::VecExpr< B, T, 4 > &v1, const ROOT::Math::LorentzVector< C > &v2) |
template<class C, class T> | |
ROOT::Math::SVector< T, 3 > | operator- (const ROOT::Math::SVector< T, 3 > &v1, const ROOT::Math::PositionVector3D< C > &v2) |
subtract the 3D Vector from the Linear Algebra -vector | |
template<class C, class B, class T> | |
ROOT::Math::SVector< T, 3 > | operator- (const ROOT::Math::VecExpr< B, T, 3 > &v1, const ROOT::Math::PositionVector3D< C > &v2) |
template<class C, class T> | |
ROOT::Math::SVector< T, 3 > | operator- (const ROOT::Math::SVector< T, 3 > &v1, const ROOT::Math::DisplacementVector3D< C > &v2) |
subtract the 3D Vector from the Linear Algebra -vector | |
template<class C, class B, class T> | |
ROOT::Math::SVector< T, 3 > | operator- (const ROOT::Math::VecExpr< B, T, 3 > &v1, const ROOT::Math::DisplacementVector3D< C > &v2) |
template<class T, class C, class R, unsigned int D> | |
ROOT::Math::SVector< T, D > | operator * (const ROOT::Math::SMatrix< T, D, 4, R > &mrtx, const ROOT::Math::LorentzVector< C > &vect) |
multiply the matrix and the Lorenz vector | |
template<class T, class C, class B, class R, unsigned int D> | |
ROOT::Math::SVector< T, D > | operator * (const ROOT::Math::Expr< B, T, D, 4, R > &mtrx, const ROOT::Math::LorentzVector< C > &vect) |
template<class T, class C, class R, unsigned int D> | |
ROOT::Math::SVector< T, D > | operator * (const ROOT::Math::LorentzVector< C > &vect, const ROOT::Math::SMatrix< T, 4, D, R > &mtrx) |
multiply the matrix and the Lorenz vector | |
template<class T, class C, class B, class R, unsigned int D> | |
ROOT::Math::SVector< T, D > | operator * (const ROOT::Math::LorentzVector< C > &vect, const ROOT::Math::Expr< B, T, 4, D, R > &mtrx) |
template<class T, class C, class R, unsigned int D> | |
ROOT::Math::SVector< T, D > | operator * (const ROOT::Math::SMatrix< T, D, 3, R > &mtrx, const ROOT::Math::DisplacementVector3D< C > &vect) |
multiply the matrix and 3D-vector | |
template<class T, class C, class B, class R, unsigned int D> | |
ROOT::Math::SVector< T, D > | operator * (const ROOT::Math::Expr< B, T, D, 3, R > &mtrx, const ROOT::Math::DisplacementVector3D< C > &vect) |
template<class T, class C, class R, unsigned int D> | |
ROOT::Math::SVector< T, D > | operator * (const ROOT::Math::DisplacementVector3D< C > &vect, const ROOT::Math::SMatrix< T, 3, D, R > &mtrx) |
multiply the matrix and the 3D-vector | |
template<class T, class C, class B, class R, unsigned int D> | |
ROOT::Math::SVector< T, D > | operator * (const ROOT::Math::DisplacementVector3D< C > &vect, const ROOT::Math::Expr< B, T, 3, D, R > &mtrx) |
template<class T, class C, class R, unsigned int D> | |
ROOT::Math::SVector< T, D > | operator * (const ROOT::Math::SMatrix< T, D, 3, R > &mtrx, const ROOT::Math::PositionVector3D< C > &vect) |
multiply the matrix and 3D-vector | |
template<class T, class C, class B, class R, unsigned int D> | |
ROOT::Math::SVector< T, D > | operator * (const ROOT::Math::Expr< B, T, D, 3, R > &mtrx, const ROOT::Math::PositionVector3D< C > &vect) |
template<class T, class C, class R, unsigned int D> | |
ROOT::Math::SVector< T, D > | operator * (const ROOT::Math::PositionVector3D< C > &vect, const ROOT::Math::SMatrix< T, 3, D, R > &mtrx) |
multiply the matrix and the 3D-vector | |
template<class T, class C, class B, class R, unsigned int D> | |
ROOT::Math::SVector< T, D > | operator * (const ROOT::Math::PositionVector3D< C > &vect, const ROOT::Math::Expr< B, T, 3, D, R > &mtrx) |
The helper namespace which contains inline operators for various objects from the world of "Geometry&Kinematics" and the object from the world of Linear Algebra
The existence of thes e operator drastically simplifies the code, dealing with kinematical and/or topolofical calculations, in particular the implementation of various kinematical fitters
To make these operators vizible for the real code one needs to use using
directive, e.g.
StatusCode myFunction ( ... ) { // get access to the useful operators: using namespace Gaudi::Math::Operators ; // NB! ... use the operators ... }
The First Operand Type | The Operator | The Second Operand Type | The Result Type
|
ROOT::Math::PositionVector3D<C> | + | ROOT::Math::SVector&<T,3> | ROOT::Math::PositionVector3D<C> |
ROOT::Math::PositionVector3D<C> | + | ROOT::Math::VecExpr<B,T,3>; | ROOT::Math::PositionVector3D<C> |
ROOT::Math::PositionVector3D<C> | - | ROOT::Math::SVector<T,3> | ROOT::Math::PositionVector3D<C> |
ROOT::Math::PositionVector3D<C> | - | ROOT::Math::VecExpr<B,T,3> | ROOT::Math::PositionVector3D<C>
|
ROOT::Math::DisplacementVector3D<C> | + | ROOT::Math::SVector<T,3> | ROOT::Math::DisplacementVector3D<C> |
ROOT::Math::DisplacementVector3D<C> | + | ROOT::Math::VecExpr<B,T,3> | ROOT::Math::DisplacementVector3D<C> |
ROOT::Math::DisplacementVector3D<C> | - | ROOT::Math::SVector<T,3> | ROOT::Math::DisplacementVector3D<C> |
ROOT::Math::DisplacementVector3D<C> | - | ROOT::Math::VecExpr<B,T,3> | ROOT::Math::DisplacementVector3D<C>
|
ROOT::Math::LorentzVector<C> | + | ROOT::Math::SVector<T,4> | ROOT::Math::LorentzVector<C> |
ROOT::Math::LorentzVector<C> | + | ROOT::Math::VecExpr<B,T,4> | ROOT::Math::LorentzVector<C> |
ROOT::Math::LorentzVector<C> | - | ROOT::Math::SVector<T,4> | ROOT::Math::LorentzVector<C> |
ROOT::Math::LorentzVector<C> | - | ROOT::Math::VecExpr<B,T,4> | ROOT::Math::LorentzVector<C>
|
ROOT::Math::SVector<T,3> | + | ROOT::Math::PositionVector3D<C> | ROOT::Math::SVector<T,3> |
ROOT::Math::VecExpr<B,T,3> | + | ROOT::Math::PositionVector3D<C> | ROOT::Math::SVector<T,3> |
ROOT::Math::SVector<T,3> | - | ROOT::Math::PositionVector3D<C> | ROOT::Math::SVector<T,3> |
ROOT::Math::VecExpr<B,T,3> | - | ROOT::Math::PositionVector3D<C> | ROOT::Math::SVector<T,3>
|
ROOT::Math::SVector<T,3> | + | ROOT::Math::DisplacementVector3D<C> | ROOT::Math::SVector<T,3> |
ROOT::Math::VecExpr<B,T,3> | + | ROOT::Math::DisplacementVector3D<C> | ROOT::Math::SVector<T,3> |
ROOT::Math::SVector<T,3> | - | ROOT::Math::DisplacementVector3D<C> | ROOT::Math::SVector<T,3> |
ROOT::Math::VecExpr<B,T,3> | - | ROOT::Math::DisplacementVector3D<C> | ROOT::Math::SVector<T,3>
|
ROOT::Math::SVector<T,4> | + | ROOT::Math::LorentzVector<C> | ROOT::Math::SVector<T,4> |
ROOT::Math::VecExpr<B,T,4> | + | ROOT::Math::LorentzVector<C> | ROOT::Math::SVector<T,4> |
ROOT::Math::SVector<T,4> | - | ROOT::Math::LorentzVector<C> | ROOT::Math::SVector<T,4> |
ROOT::Math::VecExpr<B,T,4> | - | ROOT::Math::LorentzVector<C> | ROOT::Math::SVector<T,4>
|
ROOT::Math::SMatrix<T,D,3,R> | * | ROOT::Math::PositionVector3D<C> | ROOT::Math::SVector<T,D> |
ROOT::Math::Expr<B,T,D,3,R> | * | ROOT::Math::PositionVector3D<C> | ROOT::Math::SVector<T,D> |
ROOT::Math::PositionVector3D<C> | * | ROOT::Math::SMatrix<T,3,D,R> | ROOT::Math::SVector<T,D> |
ROOT::Math::PositionVector3D<C> | * | ROOT::Math::Expr<B,T,3,D,R> | ROOT::Math::SVector<T,D>
|
ROOT::Math::SMatrix<T,D,3,R> | * | ROOT::Math::DisplacementVector3D<C> | ROOT::Math::SVector<T,D> |
ROOT::Math::Expr<B,T,D,3,R> | * | ROOT::Math::DisplacementVector3D<C> | ROOT::Math::SVector<T,D> |
ROOT::Math::DisplacementVector3D<C> | * | ROOT::Math::SMatrix<T,3,D,R> | ROOT::Math::SVector<T,D> |
ROOT::Math::DisplacementVector3D<C> | * | ROOT::Math::Expr<B,T,3,D,R> | ROOT::Math::SVector<T,D>
|
ROOT::Math::SMatrix<T,D,4,R> | * | ROOT::Math::LorentzVector<C> | ROOT::Math::SVector<T,D> |
ROOT::Math::Expr<B,T,D,4,R> | * | ROOT::Math::LorentzVector<C> | ROOT::Math::SVector<T,D> |
ROOT::Math::LorentzVector<C> | * | ROOT::Math::SMatrix<T,4,D,R> | ROOT::Math::SVector<T,D> |
ROOT::Math::LorentzVector<C> | * | ROOT::Math::Expr<B,T,4,D,R> | ROOT::Math::SVector<T,D>
|
ROOT::Math::PositionVector3D<C> Gaudi::Math::Operators::operator+ | ( | const ROOT::Math::PositionVector3D< C > & | p1, | |
const ROOT::Math::SVector< T, 3 > & | v2 | |||
) | [inline] |
addition of 3D-vector and the linear algebra vector
const Gaudi::XYZPoint& p1 = ... ; const Gaudi::Vector3& v2 = ... ; Gaudi::XYZPoint p = p1 + v2 ;
p1 | the position vector (point) | |
v2 | the linear algebra vector |
Definition at line 850 of file MatrixTransforms.h.
00852 { 00853 ROOT::Math::PositionVector3D<C> result ; 00854 result.SetXYZ( p1 . X () + v2 ( 0 ) , 00855 p1 . Y () + v2 ( 1 ) , 00856 p1 . Z () + v2 ( 2 ) ) ; 00857 return result ; 00858 }
ROOT::Math::PositionVector3D<C> Gaudi::Math::Operators::operator+ | ( | const ROOT::Math::PositionVector3D< C > & | p1, | |
const ROOT::Math::VecExpr< B, T, 3 > & | v2 | |||
) | [inline] |
Definition at line 864 of file MatrixTransforms.h.
00866 { 00867 ROOT::Math::PositionVector3D<C> result ; 00868 result.SetXYZ( p1 . X () + v2 ( 0 ) , 00869 p1 . Y () + v2 ( 1 ) , 00870 p1 . Z () + v2 ( 2 ) ) ; 00871 return result ; 00872 }
ROOT::Math::DisplacementVector3D<C> Gaudi::Math::Operators::operator+ | ( | const ROOT::Math::DisplacementVector3D< C > & | p1, | |
const ROOT::Math::SVector< T, 3 > & | v2 | |||
) | [inline] |
addition of 3D-vector and the linear algebra vector
const Gaudi::XYZVector& p1 = ... ; const Gaudi::Vector3& v2 = ... ; Gaudi::XYZVector p = p1 + v2 ;
p1 | the displacement vector | |
v2 | the linear algebra vector |
Definition at line 896 of file MatrixTransforms.h.
00898 { 00899 ROOT::Math::PositionVector3D<C> result ; 00900 result.SetXYZ( p1 . X () + v2 ( 0 ) , 00901 p1 . Y () + v2 ( 1 ) , 00902 p1 . Z () + v2 ( 2 ) ) ; 00903 return result ; 00904 }
ROOT::Math::DisplacementVector3D<C> Gaudi::Math::Operators::operator+ | ( | const ROOT::Math::DisplacementVector3D< C > & | p1, | |
const ROOT::Math::VecExpr< B, T, 3 > & | v2 | |||
) | [inline] |
Definition at line 910 of file MatrixTransforms.h.
00912 { 00913 ROOT::Math::PositionVector3D<C> result ; 00914 result.SetXYZ( p1 . X () + v2 ( 0 ) , 00915 p1 . Y () + v2 ( 1 ) , 00916 p1 . Z () + v2 ( 2 ) ) ; 00917 return result ; 00918 }
ROOT::Math::LorentzVector<C> Gaudi::Math::Operators::operator+ | ( | const ROOT::Math::LorentzVector< C > & | p1, | |
const ROOT::Math::SVector< T, 4 > & | v2 | |||
) | [inline] |
addition of Lorentz vector and the linear algebra vector
const Gaudi::LorentzVector& p1 = ... ; const Gaudi::Vector4& v2 = ... ; Gaudi::LorentzVector p = p1 + v2 ;
p1 | Lorentz vector | |
v2 | the linear algebra vector |
Definition at line 942 of file MatrixTransforms.h.
00944 { 00945 ROOT::Math::LorentzVector<C> result ; 00946 result.SetXYZT 00947 ( p1 . Px () + v2 ( 0 ) , 00948 p1 . Py () + v2 ( 1 ) , 00949 p1 . Pz () + v2 ( 2 ) , 00950 p1 . E () + v2 ( 3 ) ) ; 00951 return result ; 00952 }
ROOT::Math::LorentzVector<C> Gaudi::Math::Operators::operator+ | ( | const ROOT::Math::LorentzVector< C > & | p1, | |
const ROOT::Math::VecExpr< B, T, 4 > & | v2 | |||
) | [inline] |
Definition at line 958 of file MatrixTransforms.h.
00960 { 00961 ROOT::Math::LorentzVector<C> result ; 00962 result.SetXYZT 00963 ( p1 . Px () + v2 ( 0 ) , 00964 p1 . Py () + v2 ( 1 ) , 00965 p1 . Pz () + v2 ( 2 ) , 00966 p1 . E () + v2 ( 3 ) ) ; 00967 return result ; 00968 }
ROOT::Math::SVector<T,3> Gaudi::Math::Operators::operator+ | ( | const ROOT::Math::SVector< T, 3 > & | v2, | |
const ROOT::Math::PositionVector3D< C > & | p1 | |||
) | [inline] |
addition of 3D-vector and the linear algebra vector
const Gaudi::Vector3& v2 = ... ; const Gaudi::XYZPoint& p1 = ... ; Gaudi::Vector3 p = v2 + p1 ;
v2 | the linear algebra vector | |
p1 | the position vector (point) |
Definition at line 992 of file MatrixTransforms.h.
00994 { 00995 ROOT::Math::SVector<T,3> result ( v2 ) ; 00996 result ( 0 ) += p1 . X () ; 00997 result ( 1 ) += p1 . Y () ; 00998 result ( 2 ) += p1 . Z () ; 00999 return result ; 01000 }
ROOT::Math::SVector<T,3> Gaudi::Math::Operators::operator+ | ( | const ROOT::Math::VecExpr< B, T, 3 > & | v2, | |
const ROOT::Math::PositionVector3D< C > & | p1 | |||
) | [inline] |
Definition at line 1006 of file MatrixTransforms.h.
01008 { 01009 ROOT::Math::SVector<T,3> result = v2 ; 01010 result ( 0 ) += p1 . X () ; 01011 result ( 1 ) += p1 . Y () ; 01012 result ( 2 ) += p1 . Z () ; 01013 return result ; 01014 }
ROOT::Math::SVector<T,3> Gaudi::Math::Operators::operator+ | ( | const ROOT::Math::SVector< T, 3 > & | v2, | |
const ROOT::Math::DisplacementVector3D< C > & | p1 | |||
) | [inline] |
addition of 3D-vector and the linear algebra vector
const Gaudi::Vector3& v2 = ... ; const Gaudi::XYZVector& p1 = ... ; Gaudi::Vector3 p = v2 + p1 ;
v2 | the linear algebra vector | |
p1 | the displacement vector |
Definition at line 1038 of file MatrixTransforms.h.
01040 { 01041 ROOT::Math::SVector<T,3> result ( v2 ) ; 01042 result ( 0 ) += p1 . X () ; 01043 result ( 1 ) += p1 . Y () ; 01044 result ( 2 ) += p1 . Z () ; 01045 return result ; 01046 }
ROOT::Math::SVector<T,3> Gaudi::Math::Operators::operator+ | ( | const ROOT::Math::VecExpr< B, T, 3 > & | v2, | |
const ROOT::Math::DisplacementVector3D< C > & | p1 | |||
) | [inline] |
Definition at line 1052 of file MatrixTransforms.h.
01054 { 01055 ROOT::Math::SVector<T,3> result = v2 ; 01056 result ( 0 ) += p1 . X () ; 01057 result ( 1 ) += p1 . Y () ; 01058 result ( 2 ) += p1 . Z () ; 01059 return result ; 01060 }
ROOT::Math::SVector<T,4> Gaudi::Math::Operators::operator+ | ( | const ROOT::Math::SVector< T, 4 > & | v2, | |
const ROOT::Math::LorentzVector< C > & | p1 | |||
) | [inline] |
addition of Lorentz vector and the linear algebra vector
const Gaudi::Vector4& v2 = ... ; const Gaudi::LorentzVector& p1 = ... ; Gaudi::Vector4 p = v2 + p1 ;
v2 | the linear algebra vector | |
p1 | Lorentz vector | |
v2 | the linear algebra vector |
Definition at line 1085 of file MatrixTransforms.h.
01087 { 01088 ROOT::Math::SVector<T,4> result ( v2 ) ; 01089 result ( 0 ) += p1 . Px () ; 01090 result ( 1 ) += p1 . Py () ; 01091 result ( 2 ) += p1 . Pz () ; 01092 result ( 3 ) += p1 . E () ; 01093 return result ; 01094 }
ROOT::Math::SVector<T,4> Gaudi::Math::Operators::operator+ | ( | const ROOT::Math::VecExpr< B, T, 4 > & | v2, | |
const ROOT::Math::LorentzVector< C > & | p1 | |||
) | [inline] |
Definition at line 1100 of file MatrixTransforms.h.
01102 { 01103 ROOT::Math::SVector<T,4> result = v2 ; 01104 result ( 0 ) += p1 . Px () ; 01105 result ( 1 ) += p1 . Py () ; 01106 result ( 2 ) += p1 . Pz () ; 01107 result ( 3 ) += p1 . E () ; 01108 return result ; 01109 }
ROOT::Math::PositionVector3D<C> Gaudi::Math::Operators::operator- | ( | const ROOT::Math::PositionVector3D< C > & | p1, | |
const ROOT::Math::SVector< T, 3 > & | v2 | |||
) | [inline] |
subtraction of 3D-vector and the linear algebra vector
const Gaudi::XYZPoint& p1 = ... ; const Gaudi::Vector3& v2 = ... ; Gaudi::XYZPoint p = p1 - v2 ;
p1 | the position vector (point) | |
v2 | the linear algebra vector |
Definition at line 1133 of file MatrixTransforms.h.
01135 { 01136 ROOT::Math::PositionVector3D<C> result ; 01137 result.SetXYZ 01138 ( p1 . X () - v2 ( 0 ) , 01139 p1 . Y () - v2 ( 1 ) , 01140 p1 . Z () - v2 ( 2 ) ) ; 01141 return result ; 01142 }
ROOT::Math::PositionVector3D<C> Gaudi::Math::Operators::operator- | ( | const ROOT::Math::PositionVector3D< C > & | p1, | |
const ROOT::Math::VecExpr< B, T, 3 > & | v2 | |||
) | [inline] |
Definition at line 1148 of file MatrixTransforms.h.
01150 { 01151 ROOT::Math::PositionVector3D<C> result ; 01152 result.SetXYZ 01153 ( p1 . X () - v2 ( 0 ) , 01154 p1 . Y () - v2 ( 1 ) , 01155 p1 . Z () - v2 ( 2 ) ) ; 01156 return result ; 01157 }
ROOT::Math::DisplacementVector3D<C> Gaudi::Math::Operators::operator- | ( | const ROOT::Math::DisplacementVector3D< C > & | p1, | |
const ROOT::Math::SVector< T, 3 > & | v2 | |||
) | [inline] |
subtraction of 3D-vector and the linear algebra vector
const Gaudi::XYZVector& p1 = ... ; const Gaudi::Vector3& v2 = ... ; Gaudi::XYZVector p = p1 - v2 ;
p1 | the displacement vector | |
v2 | the linear algebra vector |
Definition at line 1182 of file MatrixTransforms.h.
01184 { 01185 ROOT::Math::PositionVector3D<C> result ; 01186 result.SetXYZ 01187 ( p1 . X () - v2 ( 0 ) , 01188 p1 . Y () - v2 ( 1 ) , 01189 p1 . Z () - v2 ( 2 ) ) ; 01190 return result ; 01191 }
ROOT::Math::DisplacementVector3D<C> Gaudi::Math::Operators::operator- | ( | const ROOT::Math::DisplacementVector3D< C > & | p1, | |
const ROOT::Math::VecExpr< B, T, 3 > & | v2 | |||
) | [inline] |
Definition at line 1197 of file MatrixTransforms.h.
01199 { 01200 ROOT::Math::PositionVector3D<C> result ; 01201 result.SetXYZ 01202 ( p1 . X () - v2 ( 0 ) , 01203 p1 . Y () - v2 ( 1 ) , 01204 p1 . Z () - v2 ( 2 ) ) ; 01205 return result ; 01206 }
ROOT::Math::LorentzVector<C> Gaudi::Math::Operators::operator- | ( | const ROOT::Math::LorentzVector< C > & | p1, | |
const ROOT::Math::SVector< T, 4 > & | v2 | |||
) | [inline] |
subtraction of Lorentz vector and the linear algebra vector
const Gaudi::LorentzVector& p1 = ... ; const Gaudi::Vector4& v2 = ... ; Gaudi::LorentzVector p = p1 - v2 ;
p1 | Lorentz vector | |
v2 | the linear algebra vector |
Definition at line 1230 of file MatrixTransforms.h.
01232 { 01233 ROOT::Math::LorentzVector<C> result ; 01234 result.SetXYZT 01235 ( p1 . Px () - v2 ( 0 ) , 01236 p1 . Py () - v2 ( 1 ) , 01237 p1 . Pz () - v2 ( 2 ) , 01238 p1 . E () - v2 ( 3 ) ) ; 01239 return result ; 01240 }
ROOT::Math::LorentzVector<C> Gaudi::Math::Operators::operator- | ( | const ROOT::Math::LorentzVector< C > & | p1, | |
const ROOT::Math::VecExpr< B, T, 4 > & | v2 | |||
) | [inline] |
Definition at line 1246 of file MatrixTransforms.h.
01248 { 01249 ROOT::Math::LorentzVector<C> result ; 01250 result.SetXYZT 01251 ( p1 . Px () - v2 ( 0 ) , 01252 p1 . Py () - v2 ( 1 ) , 01253 p1 . Pz () - v2 ( 2 ) , 01254 p1 . E () - v2 ( 3 ) ) ; 01255 return result ; 01256 }
ROOT::Math::SVector<T,4> Gaudi::Math::Operators::operator- | ( | const ROOT::Math::SVector< T, 4 > & | v1, | |
const ROOT::Math::LorentzVector< C > & | v2 | |||
) | [inline] |
subtract the Lorentz Vector from the Linear Algebra -vector
const Gaudi::Vector4& vct1 = ... ; const Gaudi::LorentzVector& vct2 = ... ; std::cout << " Delta is " << vct1-vct2 << std::endl ;
Definition at line 1276 of file MatrixTransforms.h.
01278 { 01279 ROOT::Math::SVector<T,4> result = v1 ; 01280 result ( 0 ) -= v2 . Px () ; 01281 result ( 1 ) -= v2 . Py () ; 01282 result ( 2 ) -= v2 . Pz () ; 01283 result ( 3 ) -= v2 . E () ; 01284 return result ; 01285 }
ROOT::Math::SVector<T,4> Gaudi::Math::Operators::operator- | ( | const ROOT::Math::VecExpr< B, T, 4 > & | v1, | |
const ROOT::Math::LorentzVector< C > & | v2 | |||
) | [inline] |
Definition at line 1291 of file MatrixTransforms.h.
01293 { 01294 ROOT::Math::SVector<T,4> result = v1 ; 01295 result ( 0 ) -= v2 . Px () ; 01296 result ( 1 ) -= v2 . Py () ; 01297 result ( 2 ) -= v2 . Pz () ; 01298 result ( 3 ) -= v2 . E () ; 01299 return result ; 01300 }
ROOT::Math::SVector<T,3> Gaudi::Math::Operators::operator- | ( | const ROOT::Math::SVector< T, 3 > & | v1, | |
const ROOT::Math::PositionVector3D< C > & | v2 | |||
) | [inline] |
subtract the 3D Vector from the Linear Algebra -vector
const Gaudi::Vector3& vct1 = ... ; const Gaudi::XYZPoint& vct2 = ... ; std::cout << " Delta is " << vct1-vct2 << std::endl ;
Definition at line 1320 of file MatrixTransforms.h.
01322 { 01323 ROOT::Math::SVector<T,3> result = v1 ; 01324 result ( 0 ) -= v2 . X () ; 01325 result ( 1 ) -= v2 . Y () ; 01326 result ( 2 ) -= v2 . Z () ; 01327 return result ; 01328 }
ROOT::Math::SVector<T,3> Gaudi::Math::Operators::operator- | ( | const ROOT::Math::VecExpr< B, T, 3 > & | v1, | |
const ROOT::Math::PositionVector3D< C > & | v2 | |||
) | [inline] |
Definition at line 1334 of file MatrixTransforms.h.
01336 { 01337 ROOT::Math::SVector<T,3> result = v1 ; 01338 result ( 0 ) -= v2 . X () ; 01339 result ( 1 ) -= v2 . Y () ; 01340 result ( 2 ) -= v2 . Z () ; 01341 return result ; 01342 }
ROOT::Math::SVector<T,3> Gaudi::Math::Operators::operator- | ( | const ROOT::Math::SVector< T, 3 > & | v1, | |
const ROOT::Math::DisplacementVector3D< C > & | v2 | |||
) | [inline] |
subtract the 3D Vector from the Linear Algebra -vector
const Gaudi::Vector3& vct1 = ... ; const Gaudi::XYZVector& vct2 = ... ; std::cout << " Delta is " << vct1-vct2 << std::endl ;
Definition at line 1362 of file MatrixTransforms.h.
01364 { 01365 ROOT::Math::SVector<T,3> result = v1 ; 01366 result ( 0 ) -= v2 . X () ; 01367 result ( 1 ) -= v2 . Y () ; 01368 result ( 2 ) -= v2 . Z () ; 01369 return result ; 01370 }
ROOT::Math::SVector<T,3> Gaudi::Math::Operators::operator- | ( | const ROOT::Math::VecExpr< B, T, 3 > & | v1, | |
const ROOT::Math::DisplacementVector3D< C > & | v2 | |||
) | [inline] |
Definition at line 1376 of file MatrixTransforms.h.
01378 { 01379 ROOT::Math::SVector<T,3> result = v1 ; 01380 result ( 0 ) -= v2 . X () ; 01381 result ( 1 ) -= v2 . Y () ; 01382 result ( 2 ) -= v2 . Z () ; 01383 return result ; 01384 }
ROOT::Math::SVector<T,D> Gaudi::Math::Operators::operator * | ( | const ROOT::Math::SMatrix< T, D, 4, R > & | mrtx, | |
const ROOT::Math::LorentzVector< C > & | vect | |||
) | [inline] |
multiply the matrix and the Lorenz vector
const Gaudi::SymMatrix4x4 mtrx = ... ; const Gaudi::LorentzVector vect = ... ; const Gaudi::Vector4 resut = mrtx * vect ;
Definition at line 1404 of file MatrixTransforms.h.
01406 { 01407 const ROOT::Math::SVector<T,4> vct 01408 ( vect . Px () , vect . Py () , vect . Pz () , vect.E () ) ; 01409 return mrtx * vct ; 01410 }
ROOT::Math::SVector<T,D> Gaudi::Math::Operators::operator * | ( | const ROOT::Math::Expr< B, T, D, 4, R > & | mtrx, | |
const ROOT::Math::LorentzVector< C > & | vect | |||
) | [inline] |
Definition at line 1416 of file MatrixTransforms.h.
01418 { 01419 const ROOT::Math::SVector<T,4> vct 01420 ( vect . Px () , vect . Py () , vect . Pz () , vect.E () ) ; 01421 return mtrx * vct ; 01422 }
ROOT::Math::SVector<T,D> Gaudi::Math::Operators::operator * | ( | const ROOT::Math::LorentzVector< C > & | vect, | |
const ROOT::Math::SMatrix< T, 4, D, R > & | mtrx | |||
) | [inline] |
multiply the matrix and the Lorenz vector
const Gaudi::Matrix4x5 mtrx = ... ; const Gaudi::LorentzVector vect = ... ; const Gaudi::Vector5 result = vect * mrtx ;
Definition at line 1442 of file MatrixTransforms.h.
01444 { 01445 const ROOT::Math::SVector<T,4> vct 01446 ( vect . Px () , vect . Py () , vect . Pz () , vect.E () ) ; 01447 return vct * mtrx ; 01448 }
ROOT::Math::SVector<T,D> Gaudi::Math::Operators::operator * | ( | const ROOT::Math::LorentzVector< C > & | vect, | |
const ROOT::Math::Expr< B, T, 4, D, R > & | mtrx | |||
) | [inline] |
Definition at line 1454 of file MatrixTransforms.h.
01456 { 01457 const ROOT::Math::SVector<T,4> vct 01458 ( vect . Px () , vect . Py () , vect . Pz () , vect.E () ) ; 01459 return vct * mtrx ; 01460 }
ROOT::Math::SVector<T,D> Gaudi::Math::Operators::operator * | ( | const ROOT::Math::SMatrix< T, D, 3, R > & | mtrx, | |
const ROOT::Math::DisplacementVector3D< C > & | vect | |||
) | [inline] |
multiply the matrix and 3D-vector
const Gaudi::SymMatrix3x3 mtrx = ... ; const Gaudi::XYZVector vect = ... ; const Gaudi::Vector3 resut = mrtx * vect ;
Definition at line 1480 of file MatrixTransforms.h.
01482 { 01483 const ROOT::Math::SVector<T,3> vct 01484 ( vect . X () , vect . Y () , vect . Z () ) ; 01485 return mtrx * vct ; 01486 }
ROOT::Math::SVector<T,D> Gaudi::Math::Operators::operator * | ( | const ROOT::Math::Expr< B, T, D, 3, R > & | mtrx, | |
const ROOT::Math::DisplacementVector3D< C > & | vect | |||
) | [inline] |
Definition at line 1492 of file MatrixTransforms.h.
01494 { 01495 const ROOT::Math::SVector<T,3> vct 01496 ( vect . X () , vect . Y () , vect . Z () ) ; 01497 return mtrx * vct ; 01498 }
ROOT::Math::SVector<T,D> Gaudi::Math::Operators::operator * | ( | const ROOT::Math::DisplacementVector3D< C > & | vect, | |
const ROOT::Math::SMatrix< T, 3, D, R > & | mtrx | |||
) | [inline] |
multiply the matrix and the 3D-vector
const Gaudi::SymMatrix3x3 mtrx = ... ; const Gaudi::XYZVector vect = ... ; const Gaudi::Vector3 resut = vect * mtrx ;
Definition at line 1518 of file MatrixTransforms.h.
01520 { 01521 const ROOT::Math::SVector<T,3> vct 01522 ( vect . X () , vect . Y () , vect . Z () ) ; 01523 return vct * mtrx ; 01524 }
ROOT::Math::SVector<T,D> Gaudi::Math::Operators::operator * | ( | const ROOT::Math::DisplacementVector3D< C > & | vect, | |
const ROOT::Math::Expr< B, T, 3, D, R > & | mtrx | |||
) | [inline] |
Definition at line 1530 of file MatrixTransforms.h.
01532 { 01533 const ROOT::Math::SVector<T,3> vct 01534 ( vect . X () , vect . Y () , vect . Z () ) ; 01535 return vct * mtrx ; 01536 }
ROOT::Math::SVector<T,D> Gaudi::Math::Operators::operator * | ( | const ROOT::Math::SMatrix< T, D, 3, R > & | mtrx, | |
const ROOT::Math::PositionVector3D< C > & | vect | |||
) | [inline] |
multiply the matrix and 3D-vector
const Gaudi::Matrix3x3 mtrx = ... ; const Gaudi::XYZPoint vect = ... ; const Gaudi::Vector3 result = mrtx * vect ;
Definition at line 1556 of file MatrixTransforms.h.
01558 { 01559 const ROOT::Math::SVector<T,3> vct 01560 ( vect . X () , vect . Y () , vect . Z () ) ; 01561 return mtrx * vct ; 01562 }
ROOT::Math::SVector<T,D> Gaudi::Math::Operators::operator * | ( | const ROOT::Math::Expr< B, T, D, 3, R > & | mtrx, | |
const ROOT::Math::PositionVector3D< C > & | vect | |||
) | [inline] |
Definition at line 1568 of file MatrixTransforms.h.
01570 { 01571 const ROOT::Math::SVector<T,3> vct 01572 ( vect . X () , vect . Y () , vect . X () ) ; 01573 return mtrx * vct ; 01574 }
ROOT::Math::SVector<T,D> Gaudi::Math::Operators::operator * | ( | const ROOT::Math::PositionVector3D< C > & | vect, | |
const ROOT::Math::SMatrix< T, 3, D, R > & | mtrx | |||
) | [inline] |
multiply the matrix and the 3D-vector
const Gaudi::SymMatrix3x3 mtrx = ... ; const Gaudi::XYZPoint vect = ... ; const Gaudi::Vector3 resut = vect * mtrx ;
Definition at line 1594 of file MatrixTransforms.h.
01596 { 01597 const ROOT::Math::SVector<T,3> vct 01598 ( vect . X () , vect . Y () , vect . Z () ) ; 01599 return vct * mtrx ; 01600 }
ROOT::Math::SVector<T,D> Gaudi::Math::Operators::operator * | ( | const ROOT::Math::PositionVector3D< C > & | vect, | |
const ROOT::Math::Expr< B, T, 3, D, R > & | mtrx | |||
) | [inline] |
Definition at line 1606 of file MatrixTransforms.h.
01608 { 01609 const ROOT::Math::SVector<T,3> vct 01610 ( vect . X () , vect . Y () , vect . Z () ) ; 01611 return vct * mtrx ; 01612 }