KERREG_Driver.f90 File Reference

This example generates a RBF kernel using training and testing data from disk, compress it using entry-valuation-based APIs, and evaluate the prediction error. More...

Data Types

type  application_module::quant_app
 

Modules

module  application_module
 

Functions/Subroutines

real(kind=8) function application_module::arg_thresh_zmn (quant)
 
subroutine application_module::zelem_rbf (m, n, value_e, quant)
 
program butterflypack_krr
 
subroutine rbf_solve (bmat, option, msh, quant, ptree, stats)
 

Detailed Description

This example generates a RBF kernel using training and testing data from disk, compress it using entry-valuation-based APIs, and evaluate the prediction error.

Note that instead of the use of precision dependent subroutine/module/type names "d_", one can also use the following
#define DAT 1
#include "dButterflyPACK_config.fi"
which will macro replace precision-independent subroutine/module/type names "X" with "d_X" defined in SRC_DOUBLE with double precision

Function/Subroutine Documentation

◆ butterflypack_krr()

program butterflypack_krr ( )
Here is the call graph for this function:

◆ rbf_solve()

subroutine rbf_solve ( type(d_bmatrix)  bmat,
type(d_hoption)  option,
type(d_mesh)  msh,
type(quant_app)  quant,
type(d_proctree)  ptree,
type(d_hstat)  stats 
)
Here is the call graph for this function: